Suppr超能文献

通过非局部网络实现深度高动态范围成像

Deep HDR Imaging via A Non-local Network.

作者信息

Yan Qingsen, Zhang Lei, Liu Yu, Zhu Yu, Sun Jinqiu, Shi Qinfeng, Zhang Yanning

出版信息

IEEE Trans Image Process. 2020 Feb 10. doi: 10.1109/TIP.2020.2971346.

Abstract

One of the most challenging problems in reconstructing a high dynamic range (HDR) image from multiple low dynamic range (LDR) inputs is the ghosting artifacts caused by the object motion across different inputs. When the object motion is slight, most existing methods can well suppress the ghosting artifacts through aligning LDR inputs based on optical flow or detecting anomalies among them. However, they often fail to produce satisfactory results in practice, since the real object motion can be very large. In this study, we present a novel deep framework, termed NHDRRnet, which adopts an alternative direction and attempts to remove ghosting artifacts by exploiting the non-local correlation in inputs. In NHDRRnet, we first adopt an Unet architecture to fuse all inputs and map the fusion results into a low-dimensional deep feature space. Then, we feed the resultant features into a novel global non-local module which reconstructs each pixel by weighted averaging all the other pixels using the weights determined by their correspondences. By doing this, the proposed NHDRRnet is able to adaptively select the useful information (e.g., which are not corrupted by large motions or adverse lighting conditions) in the whole deep feature space to accurately reconstruct each pixel. In addition, we also incorporate a triple-pass residual module to capture more powerful local features, which proves to be effective in further boosting the performance. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed NDHRnet in terms of suppressing the ghosting artifacts in HDR reconstruction, especially when the objects have large motions.

摘要

从多个低动态范围(LDR)输入重建高动态范围(HDR)图像时,最具挑战性的问题之一是物体在不同输入之间移动所导致的重影伪像。当物体移动较小时,大多数现有方法可以通过基于光流对齐LDR输入或检测其中的异常来很好地抑制重影伪像。然而,在实际应用中它们往往无法产生令人满意的结果,因为实际的物体运动可能非常大。在本研究中,我们提出了一种新颖的深度框架,称为NHDRRnet,它采用了一种不同的方向,并试图通过利用输入中的非局部相关性来去除重影伪像。在NHDRRnet中,我们首先采用Unet架构融合所有输入,并将融合结果映射到低维深度特征空间。然后,我们将得到的特征输入到一个新颖的全局非局部模块中,该模块使用由它们的对应关系确定的权重对所有其他像素进行加权平均来重建每个像素。通过这样做,所提出的NHDRRnet能够在整个深度特征空间中自适应地选择有用信息(例如,那些未被大运动或不利光照条件破坏的信息)来准确重建每个像素。此外,我们还引入了一个三通道残差模块来捕获更强大的局部特征,这被证明在进一步提升性能方面是有效的。在三个基准数据集上进行的大量实验证明了所提出的NDHRnet在抑制HDR重建中的重影伪像方面的优越性,特别是当物体有大运动时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验