Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103.
Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24494-24502. doi: 10.1073/pnas.2008427117. Epub 2020 Sep 9.
Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Rgg2 and Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.
调节基因葡萄糖基转移酶(Rgg)家族蛋白,如 Rgg2 和 Rgg3,已成为种属中主要的群体感应调节转录因子,控制毒力、抗菌药物耐药性和生物膜形成。Rgg2 和 Rgg3 的功能受其与寡肽群体感应信号(称为短疏水性肽(SHP))相互作用的调节。Rgg-SHP 和 Rgg 靶 DNA 启动子特异性的分子基础尚不清楚。为了弥补这一空白,我们确定了与群体感应信号 SHP3 结合的 Rgg3 的冷冻电镜(cryo-EM)结构,以及 Rgg3 自身的 X 射线晶体结构。将这些结构与与环孢菌素 A(CsA)复合的 Rgg 结构进行比较,CsA 是 SHP 诱导的 Rgg 活性抑制剂,揭示了 CsA 功能的分子基础。此外,为了确定 Rgg 蛋白如何识别 DNA 启动子,我们确定了 Rgg2 和 Rgg3 与它们的靶 DNA 启动子复合的 X 射线晶体结构。通过体内遗传实验和体外生化测定,研究了观察到的 Rgg-DNA 相互作用的生理重要性。基于这些结构-功能研究,我们提出了一个修订后的 Rgg 调节相互作用的统一模型。与现有模型不同,现有模型认为 Rgg2 蛋白是转录激活剂,Rgg3 蛋白是转录抑制剂,我们提出两者都具有转录激活能力。然而,当具有不同激活要求的 Rgg 蛋白竞争相同的 DNA 启动子时,那些具有更严格激活要求的蛋白通过阻止 SHP 结合的构象活性 Rgg 蛋白进入启动子,充当抑制剂。虽然以前没有描述过类似的基因表达调控场景,但很可能它不是链球菌所特有的。