Suppr超能文献

利用 cryo-EM 揭示细菌转录调控的机制。

Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation.

机构信息

Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.

Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia.

出版信息

Biochem Soc Trans. 2021 Dec 17;49(6):2711-2726. doi: 10.1042/BST20210674.

Abstract

Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.

摘要

转录是细菌基因表达的主要控制点,它使细胞能够对细胞内或环境的刺激做出全局反应。转录调控是由转录因子协调的,转录因子通过调节 RNA 聚合酶的活性来激活或抑制靶基因的转录。剖析这些相互作用的本质和精确编排对于发展对转录调控的分子理解至关重要。虽然 X 射线晶体学的贡献是无价的,但冷冻电子显微镜的“分辨率革命”改变了我们的结构研究,使大型、动态且常常是瞬态的转录复合物得以解析,而这些复合物在许多情况下都难以结晶。在这篇综述中,我们强调了冷冻电子显微镜在深入了解细菌转录调控方面所产生的影响。我们还为该领域的读者提供了有关冷冻电子显微镜样品制备和转录复合物图像重建的最新创新的概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe99/8786299/d1a085dc3b8a/BST-49-2711-g0001.jpg

相似文献

1
Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation.
Biochem Soc Trans. 2021 Dec 17;49(6):2711-2726. doi: 10.1042/BST20210674.
2
The cryo-EM resolution revolution and transcription complexes.
Curr Opin Struct Biol. 2018 Oct;52:8-15. doi: 10.1016/j.sbi.2018.07.002. Epub 2018 Jul 14.
3
Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery.
Acta Crystallogr F Struct Biol Commun. 2017 Apr 1;73(Pt 4):174-183. doi: 10.1107/S2053230X17003740. Epub 2017 Mar 29.
4
High-resolution cryo-EM: the nuts and bolts.
Curr Opin Struct Biol. 2017 Oct;46:1-6. doi: 10.1016/j.sbi.2017.03.003. Epub 2017 Mar 22.
5
How cryo-electron microscopy and X-ray crystallography complement each other.
Protein Sci. 2017 Jan;26(1):32-39. doi: 10.1002/pro.3022. Epub 2016 Sep 7.
6
Electron cryo-microscopy for elucidating the dynamic nature of live-protein complexes.
Biochim Biophys Acta Gen Subj. 2020 Feb;1864(2):129436. doi: 10.1016/j.bbagen.2019.129436. Epub 2019 Sep 13.
7
Cryo electron microscopy to determine the structure of macromolecular complexes.
Methods. 2016 Feb 15;95:78-85. doi: 10.1016/j.ymeth.2015.11.023. Epub 2015 Nov 27.
9
10
Methods for Preparing Cryo-EM Grids of Large Macromolecular Complexes.
Methods Mol Biol. 2018;1844:209-215. doi: 10.1007/978-1-4939-8706-1_14.

引用本文的文献

1
Transcription activation mechanism of a non-canonical bacterial DNA damage response pathway.
Res Sq. 2025 Aug 5:rs.3.rs-7152246. doi: 10.21203/rs.3.rs-7152246/v1.
2
Targeting Bacterial RNA Polymerase: Harnessing Simulations and Machine Learning to Design Inhibitors for Drug-Resistant Pathogens.
Biochemistry. 2025 Mar 18;64(6):1169-1179. doi: 10.1021/acs.biochem.4c00751. Epub 2025 Feb 27.
3
Structural Analysis of Sigma Factors.
Microorganisms. 2023 Apr 20;11(4):1077. doi: 10.3390/microorganisms11041077.
4
On the utility of microfluidic systems to study protein interactions: advantages, challenges, and applications.
Eur Biophys J. 2023 Jul;52(4-5):459-471. doi: 10.1007/s00249-022-01626-9. Epub 2022 Dec 30.

本文引用的文献

1
A case for glycerol as an acceptable additive for single-particle cryoEM samples.
Acta Crystallogr D Struct Biol. 2022 Jan 1;78(Pt 1):124-135. doi: 10.1107/S2059798321012110.
2
Structural basis of transcription activation by the global regulator Spx.
Nucleic Acids Res. 2021 Oct 11;49(18):10756-10769. doi: 10.1093/nar/gkab790.
3
N-acetylmannosamine-6-phosphate 2-epimerase uses a novel substrate-assisted mechanism to catalyze amino sugar epimerization.
J Biol Chem. 2021 Oct;297(4):101113. doi: 10.1016/j.jbc.2021.101113. Epub 2021 Aug 24.
4
BusR senses bipartite DNA binding motifs by a unique molecular ruler architecture.
Nucleic Acids Res. 2021 Sep 27;49(17):10166-10177. doi: 10.1093/nar/gkab736.
5
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
6
Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7.
Mol Cell. 2021 Jul 15;81(14):2875-2886.e5. doi: 10.1016/j.molcel.2021.05.017. Epub 2021 Jun 24.
7
Structural basis of copper-efflux-regulator-dependent transcription activation.
iScience. 2021 Apr 16;24(5):102449. doi: 10.1016/j.isci.2021.102449. eCollection 2021 May 21.
8
Structural visualization of transcription activated by a multidrug-sensing MerR family regulator.
Nat Commun. 2021 May 11;12(1):2702. doi: 10.1038/s41467-021-22990-8.
9
Understanding the invisible hands of sample preparation for cryo-EM.
Nat Methods. 2021 May;18(5):463-471. doi: 10.1038/s41592-021-01130-6. Epub 2021 May 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验