Suppr超能文献

鉴定破坏链球菌中Rgg与短疏水肽之间信号传导的群体感应抑制剂。

Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci.

作者信息

Aggarwal Chaitanya, Jimenez Juan Cristobal, Lee Hyun, Chlipala George E, Ratia Kiira, Federle Michael J

机构信息

Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA.

Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.

出版信息

mBio. 2015 May 12;6(3):e00393-15. doi: 10.1128/mBio.00393-15.

Abstract

UNLABELLED

Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health.

IMPORTANCE

The global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species of Streptococcus. Treatment of cultures of S. pyogenes with the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth.

摘要

未标记

细菌通过一种称为群体感应(QS)的细胞间化学信号传导过程来协调多种社会行为,这对环境细菌和致病细菌都很重要。随着微生物对抗生素的耐药性变得越来越普遍,开发新型抗感染疗法的迫切需求已经出现,例如通过群体感应干扰来减弱细菌病原体的能力。Rgg群体感应途径广泛存在于厚壁菌门中,它利用细胞质信息素受体(Rgg转录因子)直接结合并引发对导入肽信号的基因表达反应。在人类特异性病原体化脓性链球菌中,Rgg2/Rgg3调控回路响应短疏水肽SHP2和SHP3来控制生物膜的形成。以Rgg-SHP作为模型受体-配体靶点,我们试图鉴定能够特异性抑制Rgg群体感应回路的化合物。使用荧光偏振(FP)测定法,从各种已知药物和类药物分子库中筛选单个化合物,以检测它们破坏Rgg与异硫氰酸荧光素(FITC)偶联的SHP复合物的能力。发现最佳命中化合物在体外以亚微摩尔亲和力结合Rgg3,特异性消除Rgg2/3控制基因的转录,并阻止化脓性链球菌中的生物膜形成,同时不影响细菌生长。此外,最佳命中化合物环孢素A及其非免疫抑制类似物伐司朴达,在多种链球菌中抑制Rgg-SHP途径。基于Rgg-FITC-肽的筛选提供了一个平台,用于鉴定对每种Rgg类型具有特异性的抑制剂。发现Rgg抑制剂是朝着为改善健康而操纵细菌行为这一目标迈出的一步。

重要性

全球抗生素耐药性细菌感染的出现不仅需要发现新的抗菌药物,还需要发现新的药物靶点。由于抗生素会限制微生物生长,细菌中很快就会出现强大的耐药性选择压力。已经提出了一种对抗微生物感染的新策略,即开发能够降低入侵生物体致病性而不直接抑制其生长的疗法,从而降低产生耐药性的选择压力。实现这一目标的一种可能方法是干扰细菌用于协调群体行为的化学通讯网络,这可能包括导致疾病的基因的同步表达。在这项研究中,我们鉴定了破坏链球菌属中由Rgg蛋白调节的通讯途径的化合物。用这些抑制剂处理化脓性链球菌培养物可减少生物膜的形成,证明了用不抑制生长的化学物质控制细菌行为的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2d/4436074/a80d98a504f4/mbo0021523010001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验