Suppr超能文献

用于优化临床管理的COVID-19表型的计算机动力学

In silico dynamics of COVID-19 phenotypes for optimizing clinical management.

作者信息

Voutouri Chrysovalantis, Nikmaneshi Mohammad Reza, Hardin C Corey, Patel Ankit B, Verma Ashish, Khandekar Melin J, Dutta Sayon, Stylianopoulos Triantafyllos, Munn Lance L, Jain Rakesh K

机构信息

University of Cyprus.

Massachusetts General Hospital.

出版信息

Res Sq. 2020 Sep 3:rs.3.rs-71086. doi: 10.21203/rs.3.rs-71086/v1.

Abstract

Understanding the underlying mechanisms of COVID-19 progression and the impact of various pharmaceutical interventions is crucial for the clinical management of the disease. We developed a comprehensive mathematical framework based on the known mechanisms of the SARS-CoV-2 virus infection, incorporating the renin-angiotensin system and ACE2, which the virus exploits for cellular entry, key elements of the innate and adaptive immune responses, the role of inflammatory cytokines and the coagulation cascade for thrombus formation. The model predicts the evolution of viral load, immune cells, cytokines, thrombosis, and oxygen saturation based on patient baseline condition and the presence of co-morbidities. Model predictions were validated with clinical data from healthy people and COVID-19 patients, and the results were used to gain insight into identified risk factors of disease progression including older age, co-morbidities such as obesity, diabetes, and hypertension, and dysregulated immune response . We then simulated treatment with various drug classes to identify optimal therapeutic protocols. We found that the outcome of any treatment depends on the sustained response rate of activated CD8 T cells and sufficient control of the innate immune response. Furthermore, the best treatment -or combination of treatments - depends on the pre-infection health status of the patient. Our mathematical framework provides important insight into SARS-CoV-2 pathogenesis and could be used as the basis for personalized, optimal management of COVID-19.

摘要

了解新冠病毒疾病进展的潜在机制以及各种药物干预措施的影响对于该疾病的临床管理至关重要。我们基于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒感染的已知机制,开发了一个综合数学框架,纳入了肾素-血管紧张素系统和血管紧张素转换酶2(ACE2),病毒利用该系统进入细胞,还纳入了固有免疫和适应性免疫反应的关键要素、炎性细胞因子的作用以及血栓形成的凝血级联反应。该模型根据患者的基线状况和合并症情况预测病毒载量、免疫细胞、细胞因子、血栓形成和血氧饱和度的演变。模型预测结果通过健康人和新冠病毒疾病患者的临床数据进行了验证,这些结果被用于深入了解已确定的疾病进展风险因素,包括老年、肥胖、糖尿病和高血压等合并症以及免疫反应失调。然后,我们模拟了使用各种药物类别的治疗方法,以确定最佳治疗方案。我们发现,任何治疗的结果都取决于活化的CD8 T细胞的持续反应率以及对固有免疫反应的充分控制。此外,最佳治疗方法或治疗组合取决于患者感染前的健康状况。我们的数学框架为SARS-CoV-2发病机制提供了重要见解,可作为新冠病毒疾病个性化、优化管理的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52a3/7480033/afe0a1b975f3/nihpp-rs71086v1-f0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验