Liu Bin, Lu Zhuoqun, Tang Baolei, Liu Hao, Liu Huapeng, Zhang Zuolun, Ye Kaiqi, Zhang Hongyu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China.
Angew Chem Int Ed Engl. 2020 Dec 14;59(51):23117-23121. doi: 10.1002/anie.202011857. Epub 2020 Oct 15.
With the increasing popularity and burgeoning progress of space technology, the development of ultralow-temperature flexible functional materials is a great challenge. Herein, we report a highly emissive organic crystal combining ultralow-temperature elasticity and self-waveguide properties (when a crystal is excited, it emits light from itself, which travels through the crystal to the other end) based on a simple single-benzene emitter. This crystal displayed excellent elastic bending ability in liquid nitrogen (LN). Preliminary experiments on optical waveguiding in the bent crystal demonstrated that the light generated by the crystal itself could be confined and propagated within the crystal body between 170 and -196 °C. These results not only suggest a guideline for designing functional organic crystals with ultralow-temperature elasticity but also expand the application region of flexible materials to extreme environments, such as space technology.
随着空间技术日益普及和蓬勃发展,超低温柔性功能材料的开发面临巨大挑战。在此,我们报道了一种基于简单单苯发射体的高发射有机晶体,它兼具超低温弹性和自波导特性(当晶体被激发时,它自身发光,并穿过晶体传播到另一端)。该晶体在液氮(LN)中表现出优异的弹性弯曲能力。对弯曲晶体中的光波导进行的初步实验表明,晶体自身产生的光能够在170至 -196°C的温度范围内被限制并在晶体内传播。这些结果不仅为设计具有超低温弹性的功能性有机晶体提供了指导,还将柔性材料的应用领域扩展到了极端环境,如空间技术领域。