Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, The Netherlands.
Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands.
Heart Rhythm. 2021 Jan;18(1):79-87. doi: 10.1016/j.hrthm.2020.08.021. Epub 2020 Sep 8.
Phospholamban (PLN) p.Arg14del mutation carriers are known to develop dilated and/or arrhythmogenic cardiomyopathy, and typical electrocardiographic (ECG) features have been identified for diagnosis. Machine learning is a powerful tool used in ECG analysis and has shown to outperform cardiologists.
We aimed to develop machine learning and deep learning models to diagnose PLN p.Arg14del cardiomyopathy using ECGs and evaluate their accuracy compared to an expert cardiologist.
We included 155 adult PLN mutation carriers and 155 age- and sex-matched control subjects. Twenty-one PLN mutation carriers (13.4%) were classified as symptomatic (symptoms of heart failure or malignant ventricular arrhythmias). The data set was split into training and testing sets using 4-fold cross-validation. Multiple models were developed to discriminate between PLN mutation carriers and control subjects. For comparison, expert cardiologists classified the same data set. The best performing models were validated using an external PLN p.Arg14del mutation carrier data set from Murcia, Spain (n = 50). We applied occlusion maps to visualize the most contributing ECG regions.
In terms of specificity, expert cardiologists (0.99) outperformed all models (range 0.53-0.81). In terms of accuracy and sensitivity, experts (0.28 and 0.64) were outperformed by all models (sensitivity range 0.65-0.81). T-wave morphology was most important for classification of PLN p.Arg14del carriers. External validation showed comparable results, with the best model outperforming experts.
This study shows that machine learning can outperform experienced cardiologists in the diagnosis of PLN p.Arg14del cardiomyopathy and suggests that the shape of the T wave is of added importance to this diagnosis.
磷酸化酶结合蛋白(PLN)p.Arg14del 突变携带者已知会发展为扩张型和/或心律失常性心肌病,并且已经确定了用于诊断的典型心电图(ECG)特征。机器学习是一种用于 ECG 分析的强大工具,并且已经显示出优于心脏病专家的性能。
我们旨在开发机器学习和深度学习模型,使用 ECG 诊断 PLN p.Arg14del 心肌病,并评估其与专家心脏病医生相比的准确性。
我们纳入了 155 名成年 PLN 突变携带者和 155 名年龄和性别匹配的对照者。21 名 PLN 突变携带者(13.4%)被归类为有症状(心力衰竭或恶性室性心律失常的症状)。使用 4 折交叉验证将数据集分为训练集和测试集。开发了多个模型来区分 PLN 突变携带者和对照者。为了比较,专家心脏病医生对同一数据集进行了分类。使用来自西班牙穆尔西亚的 PLN p.Arg14del 突变携带者的外部数据集(n=50)验证了表现最佳的模型。我们应用闭塞图来可视化最有贡献的 ECG 区域。
在特异性方面,专家心脏病医生(0.99)优于所有模型(范围 0.53-0.81)。在准确性和敏感性方面,专家(0.28 和 0.64)不如所有模型(敏感性范围 0.65-0.81)。T 波形态对 PLN p.Arg14del 携带者的分类最重要。外部验证显示出可比的结果,最佳模型优于专家。
本研究表明,机器学习可以在 PLN p.Arg14del 心肌病的诊断中优于经验丰富的心脏病医生,并表明 T 波的形态对此诊断具有重要意义。