Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands.
Heart Rhythm. 2024 Jul;21(7):1102-1112. doi: 10.1016/j.hrthm.2024.02.038. Epub 2024 Feb 23.
Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed with a multimodality prediction model.
This study aimed to investigate whether an explainable deep learning-based approach allows risk prediction with only electrocardiogram (ECG) data.
A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning-based variational auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead baseline ECG into its FactorECG, a compressed version of the ECG that summarizes it into 32 explainable factors. Prediction models were developed by Cox regression.
The deep learning-based ECG-only approach was able to predict MVA with a C statistic of 0.79 (95% CI, 0.76-0.83), comparable to the current prediction model (C statistic, 0.83 [95% CI, 0.79-0.88]; P = .054) and outperforming a model based on conventional ECG parameters (low-voltage ECG and negative T waves; C statistic, 0.65 [95% CI, 0.58-0.73]; P < .001). Clinical simulations showed that a 2-step approach, with ECG-only screening followed by a full workup, resulted in 60% less additional diagnostics while outperforming the multimodal prediction model in all patients. A visualization tool was created to provide interactive visualizations (https://pln.ecgx.ai).
Our deep learning-based algorithm based on ECG data only accurately predicts the occurrence of MVA in PLN p.(Arg14del) carriers, enabling more efficient stratification of patients who need additional diagnostic testing and follow-up.
磷酸化肌球蛋白结合蛋白(PLN)p.(Arg14del)变异携带者有发生恶性室性心律失常(MVA)的风险。准确的风险分层可以及时植入心脏内除颤器,目前采用多模态预测模型进行。
本研究旨在探讨基于可解释深度学习的方法是否仅使用心电图(ECG)数据即可进行风险预测。
共确定了 679 名基线时无 MVA 的 PLN p.(Arg14del)携带者。使用基于深度学习的变分自动编码器,对 110 万份 ECG 进行训练,将 12 导联基线 ECG 转换为其 FactorECG,这是 ECG 的一种压缩版本,可将其概括为 32 个可解释的因素。通过 Cox 回归建立预测模型。
基于深度学习的仅 ECG 方法能够以 0.79 的 C 统计量(95%CI,0.76-0.83)预测 MVA,与当前预测模型(C 统计量,0.83 [95%CI,0.79-0.88];P =.054)相当,并且优于基于常规 ECG 参数的模型(低电压 ECG 和负 T 波;C 统计量,0.65 [95%CI,0.58-0.73];P <.001)。临床模拟显示,仅 ECG 筛查后进行全面检查的两步法可减少 60%的额外诊断,并且在所有患者中均优于多模态预测模型。创建了一个可视化工具,以提供交互式可视化(https://pln.ecgx.ai)。
我们基于 ECG 数据的深度学习算法可以准确预测 PLN p.(Arg14del)携带者中 MVA 的发生,使需要额外诊断测试和随访的患者分层更加高效。