Suppr超能文献

组合抗原识别在癌症 T 细胞治疗中的判别能力。

Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell Syst. 2020 Sep 23;11(3):215-228.e5. doi: 10.1016/j.cels.2020.08.002. Epub 2020 Sep 10.

Abstract

Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic efficacy of chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico screen to identify multi-antigen signatures that improve tumor discrimination by CAR T cells engineered to integrate multiple antigen inputs via Boolean logic, e.g., AND and NOT. We screen >2.5 million dual antigens and ∼60 million triple antigens across 33 tumor types and 34 normal tissues. We find that dual antigens significantly outperform the best single clinically investigated CAR targets and confirm key predictions experimentally. Further, we identify antigen triplets that are predicted to show close to ideal tumor-versus-normal tissue discrimination for several tumor types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for improving tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web server resource (antigen.princeton.edu).

摘要

精确区分肿瘤组织和正常组织仍然是嵌合抗原受体 (CAR) T 细胞治疗效果的主要障碍。在这里,我们进行了全面的计算机筛选,以确定多抗原特征,这些特征通过通过布尔逻辑(例如 AND 和 NOT)整合多个抗原输入的 CAR T 细胞设计来改善肿瘤的区分。我们筛选了超过 250 万个双抗原和大约 6000 万个三抗原,涵盖 33 种肿瘤类型和 34 种正常组织。我们发现,双抗原的性能明显优于最佳的单一临床研究 CAR 靶点,并通过实验证实了关键预测。此外,我们还确定了三抗原组合,这些组合预计在几种肿瘤类型中具有接近理想的肿瘤与正常组织区分能力。这项工作证明了 2 到 3 个抗原布尔逻辑门在提高 CAR T 细胞治疗的肿瘤区分能力方面的潜力。我们的预测可在一个交互式网络服务器资源(antigen.princeton.edu)上获得。

相似文献

1
Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies.
Cell Syst. 2020 Sep 23;11(3):215-228.e5. doi: 10.1016/j.cels.2020.08.002. Epub 2020 Sep 10.
2
Co-expression patterns of chimeric antigen receptor (CAR)-T cell target antigens in primary and recurrent ovarian cancer.
Gynecol Oncol. 2021 Feb;160(2):520-529. doi: 10.1016/j.ygyno.2020.12.005. Epub 2020 Dec 17.
3
Single-cell mapping of combinatorial target antigens for CAR switches using logic gates.
Nat Biotechnol. 2023 Nov;41(11):1593-1605. doi: 10.1038/s41587-023-01686-y. Epub 2023 Feb 16.
4
Implementing Logic Gates for Safer Immunotherapy of Cancer.
Front Immunol. 2021 Nov 4;12:780399. doi: 10.3389/fimmu.2021.780399. eCollection 2021.
5
Effective Targeting of TAG72 Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells.
Front Immunol. 2018 Nov 19;9:2268. doi: 10.3389/fimmu.2018.02268. eCollection 2018.
6
Chimeric antigen receptor-engineered T-cell therapy for liver cancer.
Hepatobiliary Pancreat Dis Int. 2018 Aug;17(4):301-309. doi: 10.1016/j.hbpd.2018.05.005. Epub 2018 May 24.
7
Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors.
Theranostics. 2020 Jun 18;10(17):7622-7634. doi: 10.7150/thno.43991. eCollection 2020.
9
Making CAR T Cells a Solid Option for Solid Tumors.
Front Immunol. 2018 Nov 8;9:2593. doi: 10.3389/fimmu.2018.02593. eCollection 2018.
10
Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells.
Blood Cells Mol Dis. 2016 Nov;62:49-63. doi: 10.1016/j.bcmd.2016.11.001. Epub 2016 Nov 10.

引用本文的文献

1
Constructing the cure: engineering the next wave of antibody and cellular immune therapies.
J Immunother Cancer. 2025 Aug 25;13(8):e011761. doi: 10.1136/jitc-2025-011761.
2
Programmable protein ligation on cell surfaces.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09287-2.
3
Pattern recognition in living cells through the lens of machine learning.
Open Biol. 2025 Jul;15(7):240377. doi: 10.1098/rsob.240377. Epub 2025 Jul 16.
4
SynNotch CAR-T cell, when synthetic biology and immunology meet again.
Front Immunol. 2025 Apr 16;16:1545270. doi: 10.3389/fimmu.2025.1545270. eCollection 2025.
5
Engineered SH3-Derived Sherpabodies Function as a Modular Platform for Targeted T-cell Immunotherapy.
Cancer Res. 2025 May 15;85(10):1874-1887. doi: 10.1158/0008-5472.CAN-24-1959.
6
Contextual computation by competitive protein dimerization networks.
Cell. 2025 Apr 3;188(7):1984-2002.e17. doi: 10.1016/j.cell.2025.01.036. Epub 2025 Feb 19.
7
ImmunoTar-integrative prioritization of cell surface targets for cancer immunotherapy.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf060.
9
Open problems in synthetic multicellularity.
NPJ Syst Biol Appl. 2024 Dec 31;10(1):151. doi: 10.1038/s41540-024-00477-8.
10
Engineering synthetic suppressor T cells that execute locally targeted immunoprotective programs.
Science. 2024 Dec 6;386(6726):eadl4793. doi: 10.1126/science.adl4793.

本文引用的文献

1
Effect of CELSR3 on the Cell Cycle and Apoptosis of Hepatocellular Carcinoma Cells.
J Cancer. 2020 Feb 21;11(10):2830-2844. doi: 10.7150/jca.39328. eCollection 2020.
3
Geometric Sketching Compactly Summarizes the Single-Cell Transcriptomic Landscape.
Cell Syst. 2019 Jun 26;8(6):483-493.e7. doi: 10.1016/j.cels.2019.05.003. Epub 2019 Jun 5.
4
Kremen1-induced cell death is regulated by homo- and heterodimerization.
Cell Death Discov. 2019 May 1;5:91. doi: 10.1038/s41420-019-0175-5. eCollection 2019.
6
Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia.
N Engl J Med. 2018 Feb 1;378(5):439-448. doi: 10.1056/NEJMoa1709866.
7
Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma.
N Engl J Med. 2017 Dec 28;377(26):2531-2544. doi: 10.1056/NEJMoa1707447. Epub 2017 Dec 10.
8
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
10
Role of AXL expression in non-small cell lung cancer.
Oncol Lett. 2016 Dec;12(6):5085-5091. doi: 10.3892/ol.2016.5356. Epub 2016 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验