Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.
Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
Nat Biotechnol. 2023 Nov;41(11):1593-1605. doi: 10.1038/s41587-023-01686-y. Epub 2023 Feb 16.
Identification of optimal target antigens that distinguish cancer cells from normal surrounding tissue cells remains a key challenge in chimeric antigen receptor (CAR) cell therapy for tumors with intratumoral heterogeneity. In this study, we dissected tissue complexity to the level of individual cells through the construction of a single-cell expression atlas that integrates ~1.4 million tumor, tumor-infiltrating normal and reference normal cells from 412 tumors and 12 normal organs. We used a two-step screening method using random forest and convolutional neural networks to select gene pairs that contribute most to discrimination between individual malignant and normal cells. Tumor coverage and specificity are evaluated for the AND, OR and NOT logic gates based on the combinatorial expression pattern of the pairing genes across individual single cells. Single-cell transcriptome-coupled epitope profiling validates the AND, OR and NOT switch targets identified in ovarian cancer and colorectal cancer.
鉴定能够区分肿瘤内异质性肿瘤细胞与正常周围组织细胞的最佳靶标抗原仍然是嵌合抗原受体(CAR)细胞疗法的一个关键挑战。在这项研究中,我们通过构建单细胞表达图谱,将组织复杂性解析到单个细胞水平,该图谱整合了来自 412 个肿瘤和 12 个正常器官的约 140 万个肿瘤、肿瘤浸润性正常和参考正常细胞。我们使用随机森林和卷积神经网络的两步筛选方法,选择对个体恶性和正常细胞之间的区分贡献最大的基因对。基于配对基因在个体单个细胞中的组合表达模式,评估 AND、OR 和 NOT 逻辑门的肿瘤覆盖率和特异性。单细胞转录组偶联表位分析验证了在卵巢癌和结直肠癌中鉴定的 AND、OR 和 NOT 开关靶标。