Suppr超能文献

抗漂移姿态跟踪器(ADPT),一种基于Transformer的用于跨物种进行稳健动物姿态估计的网络。

Anti-drift pose tracker (ADPT), a transformer-based network for robust animal pose estimation cross-species.

作者信息

Tang Guoling, Han Yaning, Sun Xing, Zhang Ruonan, Han Ming-Hu, Liu Quanying, Wei Pengfei

机构信息

University of Chinese Academy of Sciences, Shenzhen, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Elife. 2025 May 6;13:RP95709. doi: 10.7554/eLife.95709.

Abstract

Deep learning-based methods have advanced animal pose estimation, enhancing accuracy, and efficiency in quantifying animal behavior. However, these methods frequently experience tracking drift, where noise-induced jumps in body point estimates compromise reliability. Here, we present the anti-drift pose tracker (ADPT), a transformer-based tool that mitigates tracking drift in behavioral analysis. Extensive experiments across cross-species datasets-including proprietary mouse and monkey recordings and public and macaque datasets-demonstrate that ADPT significantly reduces drift and surpasses existing models like DeepLabCut and SLEAP in accuracy. Moreover, ADPT achieved 93.16% identification accuracy for 10 unmarked mice and 90.36% accuracy for freely interacting unmarked mice, which can be further refined to 99.72%, enhancing both anti-drift performance and pose estimation accuracy in social interactions. With its end-to-end design, ADPT is computationally efficient and suitable for real-time analysis, offering a robust solution for reproducible animal behavior studies. The ADPT code is available at https://github.com/tangguoling/ADPT.

摘要

基于深度学习的方法推动了动物姿态估计的发展,提高了在量化动物行为方面的准确性和效率。然而,这些方法经常出现跟踪漂移问题,即噪声引起的身体关键点估计跳跃会损害可靠性。在此,我们提出了抗漂移姿态跟踪器(ADPT),这是一种基于Transformer的工具,可减轻行为分析中的跟踪漂移。在跨物种数据集上进行的大量实验——包括专有的小鼠和猴子记录以及公开的猕猴数据集——表明,ADPT显著减少了漂移,并且在准确性方面超过了DeepLabCut和SLEAP等现有模型。此外,ADPT对10只未标记小鼠的识别准确率达到93.16%,对自由互动的未标记小鼠的准确率达到90.36%,这一准确率可进一步提高到99.72%,在社交互动中提高了抗漂移性能和姿态估计准确性。凭借其端到端设计,ADPT计算效率高,适用于实时分析,为可重复的动物行为研究提供了一个强大的解决方案。ADPT代码可在https://github.com/tangguoling/ADPT获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f7f/12055000/e578352a6159/elife-95709-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验