Suppr超能文献

胃癌中代谢相关基因的鉴定及其预后价值

Identification and prognostic value of metabolism-related genes in gastric cancer.

作者信息

Wen Fang, Huang Jiani, Lu Xiaona, Huang Wenjie, Wang Yulan, Bai Yingfeng, Ruan Shuai, Gu Suping, Chen Xiaoxue, Shu Peng

机构信息

Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.

Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China.

出版信息

Aging (Albany NY). 2020 Sep 11;12(17):17647-17661. doi: 10.18632/aging.103838.

Abstract

Gastric cancer (GC) is one of the most commonly occurring cancers, and metabolism-related genes (MRGs) are associated with its development. Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and we identified 194 MRGs differentially expressed between GC and adjacent nontumor tissues. Through univariate Cox and lasso regression analyses we identified 13 potential prognostic differentially expressed MRGs (PDEMRGs). These PDEMRGs (CKMT2, ME1, GSTA2, ASAH1, GGT5, RDH12, NNMT, POLR1A, ACYP1, GLA, OPLAH, DCK, and POLD3) were used to build a Cox regression risk model to predict the prognosis of GC patients. Further univariate and multivariate Cox regression analyses showed that this model could serve as an independent prognostic parameter. Gene Set Enrichment Analysis showed significant enrichment pathways that could potentially contribute to pathogenesis. This model also revealed the probability of genetic alterations of PDEMRGs. We have thus identified a valuable metabolic model for predicting the prognosis of GC patients. The PDEMRGs in this model reflect the dysregulated metabolic microenvironment of GC and provide useful noninvasive biomarkers.

摘要

胃癌(GC)是最常见的癌症之一,代谢相关基因(MRGs)与其发生发展相关。从癌症基因组图谱(The Cancer Genome Atlas)和基因表达综合数据库(Gene Expression Omnibus)下载了转录组数据及相关临床数据,我们鉴定出194个在GC组织和相邻非肿瘤组织之间差异表达的MRGs。通过单因素Cox回归和套索回归分析,我们确定了13个潜在的预后差异表达MRGs(PDEMRGs)。这些PDEMRGs(CKMT2、ME1、GSTA2、ASAH1、GGT5、RDH12、NNMT、POLR1A、ACYP1、GLA、OPLAH、DCK和POLD3)被用于构建Cox回归风险模型以预测GC患者的预后。进一步的单因素和多因素Cox回归分析表明,该模型可作为一个独立的预后参数。基因集富集分析显示了可能与发病机制相关的显著富集通路。该模型还揭示了PDEMRGs的基因改变概率。因此,我们确定了一个用于预测GC患者预后的有价值的代谢模型。该模型中的PDEMRGs反映了GC代谢微环境的失调,并提供了有用的非侵入性生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104f/7521523/dc0ea5c050f9/aging-12-103838-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验