Suppr超能文献

通过潜在空间图嵌入丰富阿尔茨海默病分析中脑连接性的统计推断

ENRICHING STATISTICAL INFERENCES ON BRAIN CONNECTIVITY FOR ALZHEIMER'S DISEASE ANALYSIS VIA LATENT SPACE GRAPH EMBEDDING.

作者信息

Ma Xin, Wu Guorong, Kim Won Hwa

机构信息

Department of Computer Science and Engineering, University of Texas at Arlington.

Department of Psychiatry, University of North Carolina - Chapel Hill.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1685-1689. doi: 10.1109/isbi45749.2020.9098641. Epub 2020 May 22.

Abstract

We develop a graph node embedding Deep Neural Network that leverages statistical outcome measure and graph structure given in the data. The objective is to identify regions of interests (ROIs) in the brain that are affected by topological changes of brain connectivity due to specific neurodegenerative diseases by enriching statistical group analysis. We tackle this problem by learning a latent space where statistical inference can be made more effectively. Our experiments on a large-scale Alzheimer's Disease dataset show promising result identifying ROIs that show statistically significant group differences separating even early and late Mild Cognitive Impairment (MCI) groups whose effect sizes are very subtle.

摘要

我们开发了一种图节点嵌入深度神经网络,该网络利用数据中给出的统计结果度量和图结构。目标是通过丰富统计组分析,识别大脑中受特定神经退行性疾病导致的脑连接拓扑变化影响的感兴趣区域(ROI)。我们通过学习一个能更有效进行统计推断的潜在空间来解决这个问题。我们在一个大规模阿尔茨海默病数据集上的实验显示了有前景的结果,即识别出显示出统计学上显著组间差异的ROI,这些差异甚至能区分早期和晚期轻度认知障碍(MCI)组,而它们的效应大小非常细微。

相似文献

本文引用的文献

2
Brain Network Analysis and Classification Based on Convolutional Neural Network.基于卷积神经网络的脑网络分析与分类
Front Comput Neurosci. 2018 Dec 10;12:95. doi: 10.3389/fncom.2018.00095. eCollection 2018.
3
Robust prediction of individual creative ability from brain functional connectivity.从大脑功能连接预测个体的创造力
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1087-1092. doi: 10.1073/pnas.1713532115. Epub 2018 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验