Meng Lu, Xiang Jing
College of Information Science and Engineering, Northeastern University, Shenyang, China.
Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
Front Comput Neurosci. 2018 Dec 10;12:95. doi: 10.3389/fncom.2018.00095. eCollection 2018.
Convolution neural networks (CNN) is increasingly used in computer science and finds more and more applications in different fields. However, analyzing brain network with CNN is not trivial, due to the non-Euclidean characteristics of brain network built by graph theory. To address this problem, we used a famous algorithm "word2vec" from the field of natural language processing (NLP), to represent the vertexes of graph in the node embedding space, and transform the brain network into images, which can bridge the gap between brain network and CNN. Using this model, we analyze and classify the brain network from Magnetoencephalography (MEG) data into two categories: normal controls and patients with migraine. In the experiments, we applied our method on the clinical MEG dataset, and got the mean classification accuracy rate 81.25%. These results indicate that our method can feasibly analyze and classify the brain network, and all the abundant resources of CNN can be used on the analysis of brain network.
卷积神经网络(CNN)在计算机科学中越来越常用,并在不同领域有越来越多的应用。然而,由于基于图论构建的脑网络具有非欧几里得特性,使用CNN分析脑网络并非易事。为了解决这个问题,我们使用了自然语言处理(NLP)领域的一种著名算法“word2vec”,在节点嵌入空间中表示图的顶点,并将脑网络转换为图像,这可以弥合脑网络与CNN之间的差距。使用该模型,我们将来自脑磁图(MEG)数据的脑网络分析并分类为两类:正常对照组和偏头痛患者。在实验中,我们将我们的方法应用于临床MEG数据集,得到的平均分类准确率为81.25%。这些结果表明,我们的方法可以切实可行地分析和分类脑网络,并且CNN的所有丰富资源都可用于脑网络分析。