Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
Sci Adv. 2020 Jul 10;6(28):eabb1777. doi: 10.1126/sciadv.abb1777. eCollection 2020 Jul.
It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)-activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode-based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.
人们普遍认为,CRISPR-Cas9 技术具有革命性,其存在一些公认的问题,包括潜在的脱靶编辑以及对编辑时空控制的需求。在这里,我们描述了一种远红光(FRL)激活的分割 Cas9(FAST)系统,该系统可在哺乳动物细胞和小鼠中稳健地诱导基因编辑。通过基于发光二极管的 FRL 照明,FAST 系统可有效地编辑基因,包括非同源末端连接和同源定向修复,用于人类细胞中的多个基因座。此外,我们表明 FAST 可以轻松实现 tdTomato 报告小鼠中内部器官的 FRL 诱导编辑。最后,FAST 被证明可以在小鼠异种移植肿瘤模型中实现 FRL 触发的致癌基因编辑。除了扩展 CRISPR-Cas9 技术的光遗传学工具包中的光能量光谱之外,本研究还展示了 FAST 系统如何在生物和生物医学背景下用于可编程的深层组织基因编辑,以实现高精度和空间特异性。