Suppr超能文献

通过基因组尺度代谢建模为捕食性细菌蛭弧菌的双相生活方式提供新的见解。

Providing new insights on the biphasic lifestyle of the predatory bacterium Bdellovibrio bacteriovorus through genome-scale metabolic modeling.

机构信息

Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain.

Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.

出版信息

PLoS Comput Biol. 2020 Sep 14;16(9):e1007646. doi: 10.1371/journal.pcbi.1007646. eCollection 2020 Sep.

Abstract

In this study we analyze the growth-phase dependent metabolic states of Bdellovibrio bacteriovorus by constructing a fully compartmented, mass and charge-balanced genome-scale metabolic model of this predatory bacterium (iCH457). Considering the differences between life cycle phases driving the growth of this predator, growth-phase condition-specific models have been generated allowing the systematic study of its metabolic capabilities. Using these computational tools, we have been able to analyze, from a system level, the dynamic metabolism of the predatory bacteria as the life cycle progresses. We provide computational evidences supporting potential axenic growth of B. bacteriovorus's in a rich medium based on its encoded metabolic capabilities. Our systems-level analysis confirms the presence of "energy-saving" mechanisms in this predator as well as an abrupt metabolic shift between the attack and intraperiplasmic growth phases. Our results strongly suggest that predatory bacteria's metabolic networks have low robustness, likely hampering their ability to tackle drastic environmental fluctuations, thus being confined to stable and predictable habitats. Overall, we present here a valuable computational testbed based on predatory bacteria activity for rational design of novel and controlled biocatalysts in biotechnological/clinical applications.

摘要

在这项研究中,我们通过构建一个全面分隔的、质量和电荷平衡的基因组规模代谢模型(iCH457)来分析捕食性细菌 Bdellovibrio bacteriovorus 的生长阶段依赖性代谢状态。考虑到驱动这种捕食者生长的生命周期阶段的差异,我们生成了特定于生长阶段的模型,从而可以系统地研究其代谢能力。利用这些计算工具,我们能够从系统层面分析捕食细菌的动态代谢,随着生命周期的进展。我们提供了计算证据,支持基于其编码代谢能力,在丰富的培养基中进行 B. bacteriovorus 无菌生长的可能性。我们的系统水平分析证实了这种捕食者存在“节能”机制,以及在攻击和周质内生长阶段之间的突然代谢转变。我们的结果强烈表明,捕食细菌的代谢网络的鲁棒性较低,这可能限制了它们应对剧烈环境波动的能力,因此只能局限于稳定和可预测的栖息地。总的来说,我们在这里提出了一个基于捕食细菌活性的有价值的计算测试平台,用于在生物技术/临床应用中合理设计新型和可控的生物催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d4/7529429/163c9d2cd9c0/pcbi.1007646.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验