Yu Xi, Cadatal-Raduban Marilou, Kato Seiya, Kase Masahiko, Ono Shingo
Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan.
Centre for Theoretical Chemistry and Physics, School of Natural and Computational Sciences, Massey University, Albany, Auckland 0632, New Zealand.
Nanotechnology. 2021 Jan 1;32(1):015501. doi: 10.1088/1361-6528/abb84e.
A photoconductive detector (PCD) responding only to vacuum ultraviolet (VUV) radiations below 180 nm without any filter was fabricated using an yttrium fluoride (YF) thin film grown by femtosecond (fs) laser pulsed laser deposition (PLD). The structural morphology (particle size and surface roughness) of the thin film was improved using a low laser fluence and a high substrate temperature during the fabrication. The smallest average particle size achieved was 159 nm with a roughness of 37 nm at a laser fluence of 13.5 J cm and a substrate temperature of 400 °C. The resistances for the dark current of the PCD increased from 10 TΩ to 680 TΩ using YF thin films with a smaller average nanoparticle diameter of 159 nm rather than 330 nm. The time response of the PCD to a VUV flash lamp emitting at 170 nm showed that a small average nanoparticle diameter results to a fast response time. By covering the Al electrode pairs with another fs PLD-grown YF film, the influence of external photoelectric effect was suppressed and the response wavelength edge decreased from 280 nm to 180 nm without any filter. The filterless PCD is expected to enhance the use of fluoride thin films in conjunction with VUV light sources for various scientific and industrial applications.
利用飞秒(fs)激光脉冲激光沉积(PLD)生长的氟化钇(YF)薄膜,制备了一种无需任何滤光片、仅对180 nm以下真空紫外(VUV)辐射有响应的光电导探测器(PCD)。在制备过程中,通过使用低激光能量密度和高衬底温度来改善薄膜的结构形态(粒径和表面粗糙度)。在激光能量密度为13.5 J/cm²、衬底温度为400 °C时,获得的最小平均粒径为159 nm,粗糙度为37 nm。使用平均纳米颗粒直径为159 nm而非330 nm的YF薄膜,PCD暗电流的电阻从10 TΩ增加到680 TΩ。PCD对170 nm发射的VUV闪光灯的时间响应表明,较小的平均纳米颗粒直径导致快速的响应时间。通过用另一个飞秒PLD生长的YF薄膜覆盖铝电极对,抑制了外部光电效应的影响,并且在没有任何滤光片的情况下,响应波长边缘从280 nm降低到180 nm。预计这种无滤光片的PCD将促进氟化物薄膜与VUV光源结合在各种科学和工业应用中的使用。