Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Av. Libertador Bernardo O'Higgins 340, 8970117 Chile.
Department of Neuromuscular Diseases and UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
J Neurosci. 2020 Oct 14;40(42):8042-8054. doi: 10.1523/JNEUROSCI.2063-19.2020. Epub 2020 Sep 14.
Brain-derived neurotrophic factor (BDNF) is a key regulator of the morphology and connectivity of central neurons. We have previously shown that BDNF/TrkB signaling regulates the activity and mobility of the GTPases Rab5 and Rab11, which in turn determine the postendocytic sorting of signaling TrkB receptors. Moreover, decreased Rab5 or Rab11 activity inhibits BDNF-induced dendritic branching. Whether Rab5 or Rab11 activity is important for local events only or for regulating nuclear signaling and gene expression is unknown. Here, we investigated, in rat hippocampal neuronal cultures derived from embryos of unknown sex, whether BDNF-induced signaling cascades are altered when early and recycling endosomes are disrupted by the expression of dominant-negative mutants of Rab5 and Rab11. The activity of both Rab5 and Rab11 was required for sustained activity of Erk1/2 and nuclear CREB phosphorylation, and increased transcription of a BDNF-dependent program of gene expression containing CRE binding sites, which includes activity-regulated genes such as , , , , and , and growth and survival genes such as and Based on our results, we propose that early and recycling endosomes provide a platform for the integration of neurotrophic signaling from the plasma membrane to the nucleus in neurons, and that this mechanism is likely to regulate neuronal plasticity and survival. BDNF is a neurotrophic factor that regulates plastic changes in the brain, including dendritic growth. The cellular and molecular mechanisms underlying this process are not completely understood. Our results uncover the cellular requirements that central neurons possess to integrate the plasma membrane into nuclear signaling in neurons. Our results indicate that the endosomal pathway is required for the signaling cascade initiated by BDNF and its receptors at the plasma membrane to modulate BDNF-dependent gene expression and neuronal dendritic growth mediated by the CREB transcription factor. CREB is a key transcription factor regulating circuit development and learning and memory.
脑源性神经营养因子(BDNF)是中枢神经元形态和连接的关键调节因子。我们之前已经表明,BDNF/TrkB 信号调节 GTPase Rab5 和 Rab11 的活性和流动性,这反过来又决定了信号 TrkB 受体的胞内体后分拣。此外,降低 Rab5 或 Rab11 的活性会抑制 BDNF 诱导的树突分支。Rab5 或 Rab11 的活性对于局部事件是否重要,或者对于调节核信号和基因表达是否重要尚不清楚。在这里,我们在源自未知性别的胚胎的大鼠海马神经元培养物中研究了早期和再循环内体被 Rab5 和 Rab11 的显性失活突变体表达破坏时,BDNF 诱导的信号级联是否会改变。Rab5 和 Rab11 的活性对于 Erk1/2 的持续活性和核 CREB 磷酸化以及 BDNF 依赖性基因表达程序的转录增加都是必需的,该程序包含含有 CRE 结合位点的基因表达,包括活性调节基因如 、 、 、 、 和 以及生长和存活基因如 和 。基于我们的结果,我们提出早期和再循环内体为神经元中从质膜到核的神经营养信号整合提供了一个平台,并且该机制可能调节神经元可塑性和存活。BDNF 是一种神经营养因子,可调节大脑中的可塑性变化,包括树突生长。这个过程的细胞和分子机制尚未完全理解。我们的结果揭示了中枢神经元整合质膜到神经元核信号所需的细胞要求。我们的结果表明,内体途径是 BDNF 及其质膜受体起始的信号级联所必需的,以调节由 CREB 转录因子介导的 BDNF 依赖性基因表达和神经元树突生长。CREB 是调节电路发育和学习记忆的关键转录因子。