Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA.
PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
Nat Mater. 2021 Mar;20(3):403-409. doi: 10.1038/s41563-020-0799-0. Epub 2020 Sep 14.
Water-responsive materials undergo reversible shape changes upon varying humidity levels. These mechanically robust yet flexible structures can exert substantial forces and hold promise as efficient actuators for energy harvesting, adaptive materials and soft robotics. Here we demonstrate that energy transfer during evaporation-induced actuation of nanoporous tripeptide crystals results from the strengthening of water hydrogen bonding that drives the contraction of the pores. The seamless integration of mobile and structurally bound water inside these pores with a supramolecular network that contains readily deformable aromatic domains translates dehydration-induced mechanical stresses through the crystal lattice, suggesting a general mechanism of efficient water-responsive actuation. The observed strengthening of water bonding complements the accepted understanding of capillary-force-induced reversible contraction for this class of materials. These minimalistic peptide crystals are much simpler in composition compared to natural water-responsive materials, and the insights provided here can be applied more generally for the design of high-energy molecular actuators.
水响应材料在不同湿度水平下会发生可逆的形状变化。这些机械强度高但柔韧性好的结构可以产生很大的力,有望成为高效的能量收集、自适应材料和软机器人的致动器。在这里,我们证明了在纳米多孔三肽晶体的蒸发诱导致动过程中,能量传递来自于增强的水分子氢键,从而驱动孔的收缩。这些孔内的可动和结构结合的水与包含易于变形的芳香族结构域的超分子网络的无缝集成,通过晶格传递脱水诱导的机械应力,这表明了一种有效的水响应致动的一般机制。所观察到的水分子键的增强补充了对这一类材料的毛细力诱导的可逆收缩的公认理解。与天然水响应材料相比,这些极简肽晶体在组成上要简单得多,这里提供的见解可以更广泛地应用于高能分子致动器的设计。