Suppr超能文献

基于原发性子宫内膜癌数字组织病理学图像的淋巴结转移预测深度学习模型。

A deep learning model for lymph node metastasis prediction based on digital histopathological images of primary endometrial cancer.

作者信息

Feng Min, Zhao Yu, Chen Jie, Zhao Tingyu, Mei Juan, Fan Yingying, Lin Zhenyu, Yao Jianhua, Bu Hong

机构信息

Department of Pathology, West China Second University Hospital, Sichuan University & Key Laboratory of Birth Defect and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.

Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Quant Imaging Med Surg. 2023 Mar 1;13(3):1899-1913. doi: 10.21037/qims-22-220. Epub 2023 Jan 5.

Abstract

BACKGROUND

The current study aimed to develop a deep learning (DL) model for prediction of lymph node metastasis (LNM) based on hematoxylin and eosin (HE)-stained histopathological images of endometrial cancer (EC). The model was validated using external data.

METHODS

A total of 2,104 whole slide image (WSI) from 564 patients with pathologically confirmed LNM status were collated from West China Second University Hospital. An artificial intelligence (AI) model was built on the multiple instance-learning (MIL) framework for automatic prediction of the probability of LNM and its performance compared with "Mayo criteria". An additional external data source comprising 533 WSI was collected from two independent medical institutions to validate the model's robustness. Heatmaps were generated to demonstrate regions of the WSI that made the greatest contributions to the DL network output to improve understanding of these processes.

RESULTS

The proposed MIL model achieved an area under the curve (AUC) of 0.938, a sensitivity of 0.830 and a specificity of 0.911 for LNM prediction to EC. The AUC according to Mayo criteria was 0.666 for the same test dataset. For types I, II and mixed EC, AUCs were 0.927, 0.979 and 0.929, respectively. The predictive performance of the MIL model also achieved an AUC of 0.921 for early staging. In external validation data, the proposed model achieved an AUC of 0.770, a sensitivity of 0.814 and a specificity of 0.520 for LNM prediction. AUCs were 0.783 for type I and 0.818 for early stage EC.

CONCLUSIONS

The proposed MIL model generated from histopathological images of EC has a much better LNM predictive performance than that of Mayo criteria. A novel DL-based biomarker trained on different histological subtypes of EC slides was revealed to predict metastatic status with improved accuracy, especially for early staging patients. The current study proves the concept of MIL-based prediction of LNM in EC for the first time, and brought a new sight to improve the accuracy of LNM prediction. Multicenter prospective validation data is required to further confirm the clinical utility.

摘要

背景

本研究旨在基于子宫内膜癌(EC)苏木精-伊红(HE)染色的组织病理学图像开发一种用于预测淋巴结转移(LNM)的深度学习(DL)模型。该模型使用外部数据进行验证。

方法

从华西第二医院整理了564例经病理证实LNM状态患者的总共2104张全切片图像(WSI)。基于多实例学习(MIL)框架构建了一个人工智能(AI)模型,用于自动预测LNM的概率,并将其性能与“梅奥标准”进行比较。从两个独立的医疗机构收集了包含533张WSI的额外外部数据源,以验证模型的稳健性。生成热图以展示对DL网络输出贡献最大的WSI区域,以增进对这些过程的理解。

结果

所提出的MIL模型在预测EC的LNM时,曲线下面积(AUC)为0.938,敏感性为0.830,特异性为0.911。对于相同的测试数据集,根据梅奥标准的AUC为0.666。对于I型、II型和混合型EC,AUC分别为0.927、0.979和0.929。MIL模型的预测性能在早期分期时AUC也达到了0.921。在外部验证数据中,所提出的模型在预测LNM时AUC为0.770,敏感性为0.814,特异性为0.520。I型EC的AUC为0.783,早期EC的AUC为0.818。

结论

从EC组织病理学图像生成的所提出的MIL模型在LNM预测性能上比梅奥标准要好得多。揭示了一种基于不同组织学亚型的EC玻片训练的新型基于DL的生物标志物,可提高预测转移状态的准确性,特别是对于早期分期患者。本研究首次证明了基于MIL预测EC中LNM的概念,并为提高LNM预测准确性带来了新视角。需要多中心前瞻性验证数据来进一步确认其临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验