Suppr超能文献

基于自协变正则化的神经压缩组织病理学弱监督分割。

Weakly supervised segmentation on neural compressed histopathology with self-equivariant regularization.

机构信息

Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.

Department of Pathology, Asan Medical Center, Seoul, South Korea.

出版信息

Med Image Anal. 2022 Aug;80:102482. doi: 10.1016/j.media.2022.102482. Epub 2022 May 25.

Abstract

In digital pathology, segmentation is a fundamental task for the diagnosis and treatment of diseases. Existing fully supervised methods often require accurate pixel-level annotations that are both time-consuming and laborious to generate. Typical approaches first pre-process histology images into patches to meet memory constraints and later perform stitching for segmentation; at times leading to lower performance given the lack of global context. Since image level labels are cheaper to acquire, weakly supervised learning is a more practical alternative for training segmentation algorithms. In this work, we present a weakly supervised framework for histopathology segmentation using only image-level labels by refining class activation maps (CAM) with self-supervision. First, we compress gigapixel histology images with an unsupervised contrastive learning technique to retain high-level spatial context. Second, a network is trained on the compressed images to jointly predict image-labels and refine the initial CAMs via self-supervised losses. In particular, we achieve refinement via a pixel correlation module (PCM) that leverages self-attention between the initial CAM and the input to encourage fine-grained activations. Also, we introduce a feature masking technique that performs spatial dropout on the compressed input to suppress low confidence predictions. To effectively train our model, we propose a loss function that includes a classification objective with image-labels, self-supervised regularization and entropy minimization between the CAM predictions. Experimental results on two curated datasets show that our approach is comparable to fully-supervised methods and can outperform existing state-of-the-art patch-based methods. https://github.com/PhilipChicco/wsshisto.

摘要

在数字病理学中,分割是疾病诊断和治疗的基本任务。现有的完全监督方法通常需要精确的像素级注释,而生成这些注释既耗时又费力。典型的方法首先将组织学图像预处理成补丁,以满足内存限制,然后进行拼接以进行分割;由于缺乏全局上下文,这有时会导致性能下降。由于图像级标签更容易获取,因此弱监督学习是训练分割算法的更实用的选择。在这项工作中,我们提出了一种使用仅图像级标签的弱监督框架来进行组织病理学分割,方法是通过自监督来细化类激活图(CAM)。首先,我们使用无监督对比学习技术压缩千兆像素的组织学图像,以保留高层空间上下文。其次,在压缩图像上训练一个网络,共同预测图像标签并通过自监督损失来细化初始 CAM。特别是,我们通过利用初始 CAM 和输入之间的自注意力的像素相关模块(PCM)来实现细化,以鼓励细粒度的激活。此外,我们引入了一种特征掩蔽技术,对压缩输入进行空间随机失活,以抑制低置信度的预测。为了有效地训练我们的模型,我们提出了一个损失函数,该函数包括带有图像标签的分类目标、自监督正则化和 CAM 预测之间的熵最小化。在两个经过精心整理的数据集上的实验结果表明,我们的方法可与完全监督方法相媲美,并且可以优于现有的基于补丁的最先进方法。GitHub 链接

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验