Suppr超能文献

定量蛋白质电晕在生物环境中的碳纳米管上的组成和动力学。

Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA.

Graduate Group in Biophysics, University of California, Berkeley, Berkeley, California, 94720, USA.

出版信息

Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23668-23677. doi: 10.1002/anie.202008175. Epub 2020 Oct 26.

Abstract

When nanoparticles enter biological environments, proteins adsorb to form the "protein corona" which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.

摘要

当纳米粒子进入生物环境时,蛋白质会吸附在其表面形成“蛋白质冠”,从而改变纳米粒子的生物分布和毒性。在本研究中,我们测量了 DNA 功能化单壁碳纳米管(ssDNA-SWCNTs)在血浆和脑脊液中的蛋白质冠形成情况,ssDNA-SWCNTs 是一种广泛用于传感和输送的纳米粒子。我们通过质谱法对冠层组成进行了表征,揭示了与脂质结合、补体激活和凝血相关的高丰度冠层蛋白。我们研究了静电和熵驱动选择性冠形成的作用。最后,我们研究了 ssDNA-SWCNTs 上的实时蛋白质结合情况,发现结合较强的丰富蛋白和结合较弱的耗尽蛋白之间存在一致性,同时突出了协同吸附机制。对蛋白质冠组成、形成机制和动力学的了解可将纳米粒子从体外设计转化为体内应用。

相似文献

1
Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments.
Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23668-23677. doi: 10.1002/anie.202008175. Epub 2020 Oct 26.
2
Corona Exchange Dynamics on Carbon Nanotubes by Multiplexed Fluorescence Monitoring.
J Am Chem Soc. 2020 Jan 22;142(3):1254-1264. doi: 10.1021/jacs.9b09617. Epub 2020 Jan 10.
4
Proteomic fingerprinting of protein corona formed on PEGylated multi-walled carbon nanotubes.
J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Jan 15;1163:122504. doi: 10.1016/j.jchromb.2020.122504. Epub 2020 Dec 19.
5
Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona.
Adv Exp Med Biol. 2018;1048:175-198. doi: 10.1007/978-3-319-72041-8_11.
6
Nanoparticle-protein complexes mimicking corona formation in ocular environment.
Biomaterials. 2016 Dec;109:23-31. doi: 10.1016/j.biomaterials.2016.09.008. Epub 2016 Sep 13.
7
Biological effects of formation of protein corona onto nanoparticles.
Int J Biol Macromol. 2021 Apr 1;175:1-18. doi: 10.1016/j.ijbiomac.2021.01.152. Epub 2021 Jan 27.
8
Measuring the Accessible Surface Area within the Nanoparticle Corona Using Molecular Probe Adsorption.
Nano Lett. 2019 Nov 13;19(11):7712-7724. doi: 10.1021/acs.nanolett.9b02647. Epub 2019 Nov 4.
10
Ionic Strength-Mediated "DNA Corona Defects" for Efficient Arrangement of Single-Walled Carbon Nanotubes.
Adv Sci (Weinh). 2024 Apr;11(15):e2308532. doi: 10.1002/advs.202308532. Epub 2024 Jan 17.

引用本文的文献

3
Redox dye-mediated fluorescence energy transfer of carbon nanotube-based nanosensors.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2419666122. doi: 10.1073/pnas.2419666122. Epub 2025 Mar 20.
4
Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo.
ACS Nano. 2024 Dec 31;18(52):35164-35181. doi: 10.1021/acsnano.4c13076. Epub 2024 Dec 18.
5
Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection.
Adv Funct Mater. 2024 Aug 8;34(32). doi: 10.1002/adfm.202316028. Epub 2024 May 16.
8
Optical Nanosensor Passivation Enables Highly Sensitive Detection of the Inflammatory Cytokine Interleukin-6.
ACS Appl Mater Interfaces. 2024 May 29;16(21):27102-27113. doi: 10.1021/acsami.4c02711. Epub 2024 May 15.
9
Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.
ACS Sens. 2024 May 24;9(5):2237-2253. doi: 10.1021/acssensors.4c00377. Epub 2024 Apr 26.
10
Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry.
J Am Chem Soc. 2024 Jan 10;146(1):386-398. doi: 10.1021/jacs.3c09549. Epub 2023 Dec 29.

本文引用的文献

1
Corona Exchange Dynamics on Carbon Nanotubes by Multiplexed Fluorescence Monitoring.
J Am Chem Soc. 2020 Jan 22;142(3):1254-1264. doi: 10.1021/jacs.9b09617. Epub 2020 Jan 10.
2
Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages.
ACS Appl Mater Interfaces. 2020 Jan 15;12(2):1997-2008. doi: 10.1021/acsami.9b15910. Epub 2020 Jan 6.
3
Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions.
Nanoscale. 2019 Nov 7;11(41):19265-19273. doi: 10.1039/c9nr05790k. Epub 2019 Sep 24.
4
Biomolecular Functionalization of a Nanomaterial To Control Stability and Retention within Live Cells.
Nano Lett. 2019 Sep 11;19(9):6203-6212. doi: 10.1021/acs.nanolett.9b02267. Epub 2019 Aug 23.
5
Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors.
Nano Lett. 2019 Sep 11;19(9):6604-6611. doi: 10.1021/acs.nanolett.9b02865. Epub 2019 Aug 19.
6
Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor.
Sci Adv. 2019 Jul 10;5(7):eaaw3108. doi: 10.1126/sciadv.aaw3108. eCollection 2019 Jul.
7
The hard protein corona of stealth liposomes is sparse.
J Control Release. 2019 Aug 10;307:1-15. doi: 10.1016/j.jconrel.2019.05.042. Epub 2019 Jun 3.
8
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
9
Ultralarge Modulation of Fluorescence by Neuromodulators in Carbon Nanotubes Functionalized with Self-Assembled Oligonucleotide Rings.
Nano Lett. 2018 Nov 14;18(11):6995-7003. doi: 10.1021/acs.nanolett.8b02937. Epub 2018 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验