Luo Jianmin, Lu Xuan, Matios Edward, Wang Chuanlong, Wang Huan, Zhang Yiwen, Hu Xiaofei, Li Weiyang
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
Nano Lett. 2020 Oct 14;20(10):7700-7708. doi: 10.1021/acs.nanolett.0c03215. Epub 2020 Sep 23.
Although sodium (Na) is one of the most promising alternatives to lithium as an anode material for next-generation batteries, uncontrollable Na dendrite growth still remains the main challenge for Na metal batteries. Herein, a novel 1D/2D NaTiO-MXene hybrid nanoarchitecture consisting of NaTiO nanowires grown between the MXene nanosheets is synthesized by a facile approach using cetyltrimethylammonium bromide (CTAB)-pretreated TiC MXene. Used as a matrix for the Na metal anode, the NaTiO nanowires, formed benefiting from the CTAB stabilization, have chemical interaction with Na and thus provide abundant Na nucleation sites. These 1D nanostructures, together with the unique confinement effect from the 2D nanosheets, effectively guide and control the Na deposition within the interconnected nanochannels, preventing the "hot spot" formation for dendrite growth. A stable cycling performance can be achieved at a high current density up to 10 mA cm along with an ultrahigh capacity up to 20 mAh cm.
尽管钠(Na)作为下一代电池的阳极材料是锂最有前景的替代品之一,但不可控的钠枝晶生长仍然是钠金属电池的主要挑战。在此,通过一种简便的方法,使用十六烷基三甲基溴化铵(CTAB)预处理的TiC MXene合成了一种新型的由生长在MXene纳米片之间的NaTiO纳米线组成的一维/二维NaTiO-MXene混合纳米结构。用作钠金属阳极的基质时,得益于CTAB的稳定作用而形成的NaTiO纳米线与Na有化学相互作用,从而提供了丰富的Na成核位点。这些一维纳米结构,连同二维纳米片独特的限制效应,有效地引导和控制了相互连接的纳米通道内的Na沉积,防止了枝晶生长的“热点”形成。在高达10 mA cm的高电流密度下以及高达20 mAh cm的超高容量下都可以实现稳定的循环性能。