Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, PR China; Laboratory of Biotechnology and Nanotechnology, Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111226, Kybray District, Tashkent Province, Uzbekistan.
Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, 430072, Wuhan, Hubei Province, PR China.
Int J Biol Macromol. 2020 Dec 1;164:4339-4347. doi: 10.1016/j.ijbiomac.2020.09.038. Epub 2020 Sep 12.
A molecular and metabolic behaviour of EPS-producing and salt-tolerant bacterium Rhizobium radiobacter SZ4S7S14 along with its practical application in salt-stress was investigated. The research target was identification and expression profiles of a large EPS biosynthesis gene cluster, possible structural modification of EPS under salt-stress effect and analysis of the gene(s) relative expression and structural modification correlation. As expected, transposons insertions were identified within or near the coding regions of exoK and exoM, previously known large gene cluster that is required for EPS I synthesis. Different expression levels of exoK and exoM in different salt-stress models resulted in structural modification of EPS, which was seen basically in monomers molar ratio. As a result of downregulation of the genes the strain produced EPS samples with monomers ratio: (1) Glu:Man:Gal:Xyl:Ara:Rha:Rib = 31.21:3.02:2.77:1:0.91:0.64:0.41 (in 0.25% NaCl); (2) Glu:Man:Gal:Xyl:Ara:Rha:Rib = 7.65:1:0.69:0.22:0.2:0.16:0.1 (in 0.5% NaCl); (3) Glu:Man:Gal:Ara:Xyl:Rha:Rib = 9.39:1.89:1:0.58:0.52:0.46:0.26 (in 1% NaCl); and (4) Glu:Man:Ara:Xyl:Rib:Gal = 7.9:2:2:1.58:1.1:1 (in 2.0% NaCl), whereas in control (without NaCl): Glc:Man:Gal:Xyl:Ara:Rha:Rib = 11.66:1:0.90:0.37:0.37:0.15:0.14. It was found that, salt-stress not only leads to downregulation of a large EPS biosynthesis gene cluster, including exoK and exoM genes, but also impacting on their relative expression degree, re-groups of the monomers within the EPS matrix and dictates molar ratio of the monosaccharides in the final metabolite.
研究了 EPS 产生和耐盐细菌 Rhizobium radiobacter SZ4S7S14 的分子和代谢行为及其在盐胁迫下的实际应用。研究目标是鉴定和表达大型 EPS 生物合成基因簇,可能在盐胁迫作用下对 EPS 进行结构修饰,以及分析基因相对表达和结构修饰的相关性。正如预期的那样,在 exoK 和 exoM 的编码区域内或附近鉴定到转座子插入,这是以前已知的 EPS I 合成所需的大型基因簇。不同盐胁迫模型中 exoK 和 exoM 的不同表达水平导致 EPS 发生结构修饰,基本上可以从单体摩尔比看出。由于基因下调,该菌株产生的 EPS 样品的单体比为:(1)Glu:Man:Gal:Xyl:Ara:Rha:Rib=31.21:3.02:2.77:1:0.91:0.64:0.41(在 0.25%NaCl 中);(2)Glu:Man:Gal:Xyl:Ara:Rha:Rib=7.65:1:0.69:0.22:0.2:0.16:0.1(在 0.5%NaCl 中);(3)Glu:Man:Gal:Ara:Xyl:Rha:Rib=9.39:1.89:1:0.58:0.52:0.46:0.26(在 1%NaCl 中);和(4)Glu:Man:Ara:Xyl:Rib:Gal=7.9:2:2:1.58:1.1:1(在 2.0%NaCl 中),而在对照(无 NaCl)中:Glc:Man:Gal:Xyl:Ara:Rha:Rib=11.66:1:0.90:0.37:0.37:0.15:0.14。研究发现,盐胁迫不仅导致大型 EPS 生物合成基因簇,包括 exoK 和 exoM 基因的下调,还影响它们的相对表达程度、EPS 基质中单体的重新组合,并决定最终代谢物中单糖的摩尔比。