Suppr超能文献

磁性纳米颗粒在人类细胞内的不断演变的身份:内体禁闭、降解、存储和新结晶的相互作用。

Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization.

机构信息

Laboratoire Matière et Systèmes Complexes, MSC, UMR 7057, CNRS & University of Paris, 75205, Paris, Cedex 13, France.

Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France.

出版信息

Acc Chem Res. 2020 Oct 20;53(10):2212-2224. doi: 10.1021/acs.accounts.0c00355. Epub 2020 Sep 16.

Abstract

Considerable knowledge has been acquired in inorganic nanoparticles' synthesis and nanoparticles' potential use in biomedical applications. Among different materials, iron oxide nanoparticles remain unrivaled for several reasons. Not only do they respond to multiple physical stimuli (e.g., magnetism, light) and exert multifunctional therapeutic and diagnostic actions but also they are biocompatible and integrate endogenous iron-related metabolic pathways. With the aim to optimize the use of (magnetic) iron oxide nanoparticles in biomedicine, different biophysical phenomena have been recently identified and studied. Among them, the concept of a "nanoparticle's identity" is of particular importance. Nanoparticles' identities evolve in distinct biological environments and over different periods of time. In this Account, we focus on the remodeling of magnetic nanoparticles' identities following their journey inside cells. For instance, nanoparticles' functions, such as heat generation or magnetic resonance imaging, can be highly impacted by endosomal confinement. Structural degradation of nanoparticles was also evidenced and quantified and correlates with the loss of magnetic nanoparticle properties. Remarkably, in human stem cells, the nonmagnetic products of nanoparticles' degradation could be subsequently reassembled into neosynthesized, endogenous magnetic nanoparticles. This stunning occurrence might account for the natural presence of magnetic particles in human organs, especially the brain. However, mechanistic details and the implication of such phenomena in homeostasis and disease have yet to be completely unraveled.This Account aims to assess the short- and long-term transformations of magnetic iron oxide nanoparticles in living cells, particularly focusing on human stem cells. Precisely, we herein overview the multiple and ever-evolving chemical, physical, and biological magnetic nanoparticles' identities and emphasize the remarkable intracellular fate of these nanoparticles.

摘要

在无机纳米粒子的合成以及纳米粒子在生物医学应用中的潜在用途方面,已经取得了相当多的知识。在不同的材料中,氧化铁纳米粒子由于多种原因仍然无与伦比。它们不仅对多种物理刺激(例如磁性、光)有反应,并发挥多功能治疗和诊断作用,而且还具有生物相容性并整合内源性与铁相关的代谢途径。为了优化(磁性)氧化铁纳米粒子在生物医学中的应用,最近已经确定并研究了不同的生物物理现象。其中,“纳米粒子的特性”的概念尤为重要。纳米粒子的特性在不同的生物环境中和不同的时间段内发生变化。在本述评中,我们重点关注磁性纳米粒子在细胞内的旅程中其特性的重塑。例如,纳米粒子的功能,如发热或磁共振成像,可以受到内体限制的强烈影响。还证明并量化了纳米粒子的结构降解,并且与磁性纳米粒子特性的丧失相关。值得注意的是,在人类干细胞中,纳米粒子降解的非磁性产物随后可以重新组装成新合成的、内源性磁性纳米粒子。这种惊人的现象可能解释了人类器官中磁性颗粒的自然存在,特别是在大脑中。然而,这种现象的机制细节及其在体内平衡和疾病中的影响仍有待完全阐明。本述评旨在评估磁性氧化铁纳米粒子在活细胞中的短期和长期转化,特别是聚焦于人类干细胞。具体而言,我们在此概述了磁性纳米粒子的多种且不断变化的化学、物理和生物特性,并强调了这些纳米粒子在细胞内的显著命运。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验