Suppr超能文献

大量铁氧化物纳米颗粒在单细胞内体和组织水平的磁性内降解。

Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels.

机构信息

Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France.

ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France.

出版信息

ACS Nano. 2016 Aug 23;10(8):7627-38. doi: 10.1021/acsnano.6b02876. Epub 2016 Jul 22.

Abstract

Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here, we propose stem-cell spheroids as a tissue model to track intracellular magnetic nanoparticle transformations during long-term tissue maturation. We show that global spheroid magnetism can serve as a fingerprint of the degradation process, and we evidence a near-complete nanoparticle degradation over a month of tissue maturation, as confirmed by electron microscopy. Remarkably, the same massive degradation was measured at the endosome level by single-endosome nanomagnetophoretic tracking in cell-free endosomal extract. Interestingly, this spectacular nanoparticle breakdown barely affected iron homeostasis: only the genes coding for ferritin light chain (iron loading) and ferroportin (iron export) were up-regulated 2-fold by the degradation process. Besides, the magnetic and tissular tools developed here allow screening of the biostability of magnetic nanomaterials, as demonstrated with iron oxide nanocubes and nanodimers. Hence, stem-cell spheroids and purified endosomes are suitable models needed to monitor nanoparticle degradation in conjunction with magnetic, chemical, and biological characterizations at the cellular scale, quantitatively, in the long term, in situ, and in real time.

摘要

定量研究铁氧化物纳米粒子在细胞内的长期命运,这是再生医学应用的前提,但受到缺乏合适的生物组织模型和分析方法的阻碍。在这里,我们提出干细胞球体作为一种组织模型,以跟踪长期组织成熟过程中细胞内磁性纳米粒子的转化。我们表明,整个球体的磁性可以作为降解过程的指纹,并且我们证明了在一个月的组织成熟过程中几乎完全降解了纳米粒子,这一点通过电子显微镜得到了证实。值得注意的是,通过在无细胞内体提取物中单内体纳米磁泳跟踪,在内涵体水平上也测量到了相同的大规模降解。有趣的是,这种壮观的纳米颗粒分解几乎没有影响铁的稳态:只有编码铁蛋白轻链(铁加载)和亚铁转运蛋白(铁输出)的基因因降解过程而上调了 2 倍。此外,这里开发的磁性和组织工具允许筛选磁性纳米材料的生物稳定性,如用氧化铁纳米立方和纳米二聚体证明的那样。因此,干细胞球体和纯化的内涵体是合适的模型,需要在细胞尺度上进行磁性、化学和生物学特性的长期、原位和实时定量监测,以监测纳米粒子的降解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验