Suppr超能文献

机器学习量子反应速率常数

Machine Learning Quantum Reaction Rate Constants.

作者信息

Komp Evan, Valleau Stéphanie

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Phys Chem A. 2020 Oct 15;124(41):8607-8613. doi: 10.1021/acs.jpca.0c05992. Epub 2020 Sep 30.

Abstract

The ab initio calculation of exact quantum reaction rate constants comes at a high cost due to the required dynamics of reactants on multidimensional potential energy surfaces. In turn, this impedes the rapid design of the kinetics for large sets of coupled reactions. In an effort to overcome this hurdle, a deep neural network (DNN) was trained to predict the logarithm of quantum reaction rate constants multiplied by their reactant partition function-rate products. The training dataset was generated in-house and contains ∼1.5 million quantum reaction rate constants for single, double, symmetric and asymmetric one-dimensional potentials computed over a broad range of reactant masses and temperatures. The DNN was able to predict the logarithm of the rate product with a relative error of 1.1%. Furthermore, when comparing the difference between the DNN prediction and classical transition state theory at temperatures below 300 K a relative percent error of 31% was found with respect to the exact difference. Systems beyond the test set were also studied, these included the H + H reaction, the diffusion of hydrogen on Ni(100), the Menshutkin reaction of pyridine with CHBr in the gas phase, the reaction of formalcyanohydrin with HS in water and the F + HCl reaction. For these reactions, the DNN predictions were accurate at high temperatures and in good agreement with the exact rates at lower temperatures. This work shows that one can take advantage of a DNN to gain insight on reactivity in the quantum regime.

摘要

由于需要在多维势能面上对反应物进行动力学计算,从头计算精确的量子反应速率常数成本很高。这反过来又阻碍了对大量耦合反应动力学的快速设计。为了克服这一障碍,训练了一个深度神经网络(DNN)来预测量子反应速率常数的对数与其反应物配分函数 - 速率乘积。训练数据集是内部生成的,包含在广泛的反应物质量和温度范围内计算得到的约150万个单、双、对称和不对称一维势的量子反应速率常数。DNN能够以1.1%的相对误差预测速率乘积的对数。此外,在低于300 K的温度下比较DNN预测值与经典过渡态理论之间的差异时,相对于精确差异发现相对百分比误差为31%。还研究了测试集之外的体系,包括H + H反应、氢在Ni(100)上的扩散、吡啶与CHBr在气相中的门舒特金反应、甲醛腈与HS在水中的反应以及F + HCl反应。对于这些反应,DNN预测在高温下是准确的,并且在低温下与精确速率高度一致。这项工作表明,可以利用DNN来深入了解量子体系中的反应活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验