Komp Evan, Valleau Stéphanie
Chemical Engineering, University of Washington 3781 Okanogan Ln Seattle WA 98195 USA
Chem Sci. 2022 Jun 14;13(26):7900-7906. doi: 10.1039/d2sc01334g. eCollection 2022 Jul 6.
We have generated an open-source dataset of over 30 000 organic chemistry gas phase partition functions. With this data, a machine learning deep neural network estimator was trained to predict partition functions of unknown organic chemistry gas phase transition states. This estimator only relies on reactant and product geometries and partition functions. A second machine learning deep neural network was trained to predict partition functions of chemical species from their geometry. Our models accurately predict the logarithm of test set partition functions with a maximum mean absolute error of 2.7%. Thus, this approach provides a means to reduce the cost of computing reaction rate constants . The models were also used to compute transition state theory reaction rate constant prefactors and the results were in quantitative agreement with the corresponding calculations with an accuracy of 98.3% on the log scale.
我们生成了一个包含超过30000个有机化学气相分配函数的开源数据集。利用这些数据,训练了一个机器学习深度神经网络估计器,以预测未知有机化学气相过渡态的分配函数。该估计器仅依赖于反应物和产物的几何结构及分配函数。训练了第二个机器学习深度神经网络,以根据化学物种的几何结构预测其分配函数。我们的模型准确地预测了测试集分配函数的对数,最大平均绝对误差为2.7%。因此,这种方法提供了一种降低计算反应速率常数成本的手段。这些模型还用于计算过渡态理论反应速率常数的前因子,结果与相应的计算在对数尺度上的准确率为98.3%,在数量上一致。