文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症靶向治疗的仿生纳米载体

Biomimetic Nanocarriers for Cancer Target Therapy.

作者信息

Guido Clara, Maiorano Gabriele, Cortese Barbara, D'Amone Stefania, Palamà Ilaria Elena

机构信息

Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy.

Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy.

出版信息

Bioengineering (Basel). 2020 Sep 14;7(3):111. doi: 10.3390/bioengineering7030111.


DOI:10.3390/bioengineering7030111
PMID:32937963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7552783/
Abstract

Nanotechnology offers innovative tools for the design of biomimetic nanocarriers for targeted cancer therapy. These nano-systems present several advantages such as cargo's protection and modulation of its release, inclusion of stimuli-responsive elements, and enhanced tumoral accumulation. All together, these nano-systems suffer low therapeutic efficacy in vivo because organisms can recognize and remove foreign nanomaterials. To overcome this important issue, different modifications on nanoparticle surfaces were exploited in order to reach the desired therapeutic efficacy eliciting, also, the response of immune system against cancer cells. For this reason, more recently, a new strategy involving cell membrane-covered nanoparticles for biomedical application has been attracting increasing attention. Membranes from red blood cells, platelets, leukocytes, tumor, and stem cells, have been exploited as biomimetic coatings of nanoparticles for evading clearance or stimulated immune system by maintaining in the same way their targeting capability. In this review, the use of different cell sources as coating of biomimetic nanocarriers for cancer therapy is discussed.

摘要

纳米技术为靶向癌症治疗的仿生纳米载体设计提供了创新工具。这些纳米系统具有多种优势,如对所载药物的保护及其释放的调节、包含刺激响应元件以及增强肿瘤蓄积。然而,总体而言,这些纳米系统在体内的治疗效果较低,因为生物体能够识别并清除外来纳米材料。为克服这一重要问题,人们对纳米颗粒表面进行了不同修饰,以达到所需的治疗效果,同时也引发免疫系统对癌细胞的反应。因此,最近一种涉及细胞膜包覆纳米颗粒的生物医学应用新策略越来越受到关注。红细胞、血小板、白细胞、肿瘤细胞和干细胞的膜已被用作纳米颗粒的仿生涂层,通过保持其靶向能力的方式来逃避清除或刺激免疫系统。在这篇综述中,讨论了使用不同细胞来源作为癌症治疗仿生纳米载体涂层的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/c512e0d43836/bioengineering-07-00111-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/97408d9aaa6b/bioengineering-07-00111-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/07c528d49b5f/bioengineering-07-00111-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/1abdb997b5c5/bioengineering-07-00111-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/af850fcb5fac/bioengineering-07-00111-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/d304872cbe6b/bioengineering-07-00111-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/c512e0d43836/bioengineering-07-00111-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/97408d9aaa6b/bioengineering-07-00111-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/07c528d49b5f/bioengineering-07-00111-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/1abdb997b5c5/bioengineering-07-00111-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/af850fcb5fac/bioengineering-07-00111-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/d304872cbe6b/bioengineering-07-00111-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b7/7552783/c512e0d43836/bioengineering-07-00111-g006.jpg

相似文献

[1]
Biomimetic Nanocarriers for Cancer Target Therapy.

Bioengineering (Basel). 2020-9-14

[2]
Construction of Biomimetic-Responsive Nanocarriers and their Applications in Tumor Targeting.

Anticancer Agents Med Chem. 2022

[3]
Stem cell membrane-coated abiotic nanomaterials for biomedical applications.

J Control Release. 2022-11

[4]
Biomimetic cell-derived nanocarriers in cancer research.

J Nanobiotechnology. 2022-12-22

[5]
Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy.

Acta Biomater. 2017-9-1

[6]
Stimuli-responsive and biomimetic delivery systems for sepsis and related complications.

J Control Release. 2022-12

[7]
Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective.

Drug Deliv. 2023-12

[8]
Cell-derived membrane biomimetic nanocarriers for targeted therapy of pulmonary disease.

Int J Pharm. 2022-5-25

[9]
Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy.

Expert Opin Drug Deliv. 2023

[10]
Tumor Targeted Nanocarriers for Immunotherapy.

Molecules. 2020-3-26

引用本文的文献

[1]
Biomembrane-coated nanosystems as next-generation delivery systems for the treatment of gastrointestinal cancers.

Bioeng Transl Med. 2025-2-26

[2]
Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications.

Beilstein J Nanotechnol. 2024-12-16

[3]
Biomimetic Hydrogel Strategies for Cancer Therapy.

Gels. 2024-6-30

[4]
Targeted Therapy of Acute Liver Injury via Cryptotanshinone-Loaded Biomimetic Nanoparticles Derived from Mesenchymal Stromal Cells Driven by Homing.

Pharmaceutics. 2023-12-12

[5]
Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems.

Pharmaceutics. 2023-11-14

[6]
Metastatic Breast Cancer: Review of Emerging Nanotherapeutics.

Cancers (Basel). 2023-5-25

[7]
Inflammation and Microbiota Regulation Potentiate Pneumonia Therapy by Biomimetic Bacteria and Macrophage Membrane Nanosystem.

Research (Wash D C). 2023

[8]
Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals.

Front Vet Sci. 2023-3-6

[9]
Biomimicry in nanotechnology: a comprehensive review.

Nanoscale Adv. 2022-12-22

[10]
Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer.

Theranostics. 2022

本文引用的文献

[1]
Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications.

Nanomicro Lett. 2019-11-16

[2]
Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles.

Biochemistry. 2021-4-6

[3]
Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of "Stealthy" Nanomaterials.

Front Bioeng Biotechnol. 2020-4-3

[4]
Platelet-Like Gold Nanostars for Cancer Therapy: The Ability to Treat Cancer and Evade Immune Reactions.

Front Bioeng Biotechnol. 2020-2-25

[5]
Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study.

Lancet. 2019-9-3

[6]
Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery.

J Nanobiotechnology. 2019-5-13

[7]
Hide and Seek: Nanomaterial Interactions With the Immune System.

Front Immunol. 2019-2-1

[8]
Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation.

J Control Release. 2019-1-23

[9]
Dual-Modified Novel Biomimetic Nanocarriers Improve Targeting and Therapeutic Efficacy in Glioma.

ACS Appl Mater Interfaces. 2019-1-4

[10]
Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic.

J Control Release. 2018-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索