Suppr超能文献

无偶联反应的偶联:通过去芳构化-再芳构化过程开发酚类作为可持续偶联伙伴。

Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization-Rearomatization Processes.

机构信息

Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China.

出版信息

Acc Chem Res. 2020 Oct 20;53(10):2395-2413. doi: 10.1021/acs.accounts.0c00479. Epub 2020 Sep 17.

Abstract

Transition-metal-catalyzed cross-coupling reactions represent one of the most straightforward and efficient protocols to assemble two different molecular motifs for the construction of carbon-carbon or carbon-heteroatom bonds. Because of their importance and wide applications in pharmaceuticals, agrochemicals, materials, etc., cross-coupling reactions have been well recognized in the 2010 Nobel Prize in chemistry. However, in the classical transition-metal-catalyzed cross-coupling reactions (e.g., the Suzuki-Miyaura, the Buchwald-Hartwig, and the Ullmann cross-coupling reactions), organohalides, which mainly stem from the nonrenewable fossil resources, are often utilized as coupling partners with halide wastes being generated after the reactions. To make cross-coupling reactions more sustainable, we initiated a general research program by employing phenols and cyclohexa(e)nones (the reduced forms of phenols) as pivotal feedstocks (coupling partners), instead of the commonly used fossil-derived organohalides, for cross-coupling reactions to build C-O, C-N, and C-C bonds. Phenols (cyclohexa(e)nones) are widely available and can be obtained from lignin biomass, highlighting their renewable and sustainable features. Moreover, water is expected to be the only stoichiometric byproduct, thus avoiding halide wastes.Notably, the cross-coupling reactions utilizing phenols/cyclohexa(e)nones are not based on the traditional transition-metal-catalyzed "oxidative-addition and reductive-elimination" mechanism, but via a novel "phenol-cyclohexanone" redox couple. This new working mechanism opens up new horizons of designing cross-coupling reactions via simple nucleophilic addition of cyclohexanones along with aromatization processes, thereby simplifying the design and avoiding laborious optimization of transition-metal precursors (e.g., Pd, Ni, Cu, etc.), as well as ligands in classical transition-metal-catalyzed cross-coupling reactions. Specifically, in this Account, we will summarize and discuss our related research work in the following three categories: "formal oxidative couplings of cyclohexa(e)nones", "formal reductive couplings of phenols", and "formal redox-neutral couplings of phenols". The successes of these research projects clearly demonstrated our initial inspirations and rational designs to develop cross-coupling reactions without the "conventional cross-coupling conditions" by pushing the reaction frontiers from initial cyclohexanones, ultimately, to the sustainable phenol targets.

摘要

过渡金属催化的交叉偶联反应是构建碳-碳或碳-杂原子键的两种不同分子基元的最直接、最有效的方法之一。由于其在制药、农业化学、材料等领域的重要性和广泛应用,交叉偶联反应在 2010 年的诺贝尔化学奖中得到了充分肯定。然而,在经典的过渡金属催化交叉偶联反应(如 Suzuki-Miyaura、Buchwald-Hartwig 和 Ullmann 交叉偶联反应)中,有机卤化物主要来自不可再生的化石资源,通常用作偶联试剂,反应后会产生卤化物废物。为了使交叉偶联反应更具可持续性,我们启动了一项综合研究计划,采用苯酚和环己烯酮(苯酚的还原形式)作为关键的原料(偶联试剂),而不是通常使用的源自化石的有机卤化物,用于构建 C-O、C-N 和 C-C 键的交叉偶联反应。苯酚(环己烯酮)广泛存在,可以从木质素生物质中获得,突出了其可再生和可持续的特点。此外,预计水将是唯一的化学计量副产物,从而避免了卤化物废物的产生。值得注意的是,利用苯酚/环己烯酮的交叉偶联反应不是基于传统的过渡金属催化的“氧化加成和还原消除”机制,而是通过一种新的“苯酚-环己酮”氧化还原对。这种新的工作机制为通过简单的环己酮亲核加成和芳香化过程设计交叉偶联反应开辟了新的视野,从而简化了设计,避免了对经典过渡金属催化交叉偶联反应中过渡金属前体(如 Pd、Ni、Cu 等)和配体的繁琐优化。具体来说,在本报告中,我们将总结和讨论我们在以下三个类别中的相关研究工作:“环己烯酮的形式氧化偶联”、“苯酚的形式还原偶联”和“苯酚的形式氧化还原中性偶联”。这些研究项目的成功清楚地表明了我们最初的灵感和合理设计,通过将反应前沿从最初的环己酮推进到最终的可持续苯酚目标,从而在没有“传统交叉偶联条件”的情况下开发交叉偶联反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验