Suppr超能文献

超声检查中应用深度卷积神经网络诊断甲状腺结节。

Diagnosis of thyroid nodules on ultrasonography by a deep convolutional neural network.

机构信息

Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.

Department of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2020 Sep 17;10(1):15245. doi: 10.1038/s41598-020-72270-6.

Abstract

The purpose of this study was to evaluate and compare the diagnostic performances of the deep convolutional neural network (CNN) and expert radiologists for differentiating thyroid nodules on ultrasonography (US), and to validate the results in multicenter data sets. This multicenter retrospective study collected 15,375 US images of thyroid nodules for algorithm development (n = 13,560, Severance Hospital, SH training set), the internal test (n = 634, SH test set), and the external test (n = 781, Samsung Medical Center, SMC set; n = 200, CHA Bundang Medical Center, CBMC set; n = 200, Kyung Hee University Hospital, KUH set). Two individual CNNs and two classification ensembles (CNNE1 and CNNE2) were tested to differentiate malignant and benign thyroid nodules. CNNs demonstrated high area under the curves (AUCs) to diagnose malignant thyroid nodules (0.898-0.937 for the internal test set and 0.821-0.885 for the external test sets). AUC was significantly higher for CNNE2 than radiologists in the SH test set (0.932 vs. 0.840, P < 0.001). AUC was not significantly different between CNNE2 and radiologists in the external test sets (P = 0.113, 0.126, and 0.690). CNN showed diagnostic performances comparable to expert radiologists for differentiating thyroid nodules on US in both the internal and external test sets.

摘要

这项研究的目的是评估和比较深度卷积神经网络(CNN)和专家放射科医生在超声(US)区分甲状腺结节方面的诊断性能,并在多中心数据集上验证结果。这项多中心回顾性研究收集了用于算法开发的 15375 个甲状腺结节 US 图像(n=13560,Severance 医院,SH 训练集)、内部测试(n=634,SH 测试集)和外部测试(n=781,三星医疗中心,SMC 集;n=200,CHA Bundang 医疗中心,CBMC 集;n=200,庆熙大学医院,KUH 集)。测试了两个独立的 CNN 和两个分类集成(CNNE1 和 CNNE2)以区分良恶性甲状腺结节。CNN 显示出较高的曲线下面积(AUC)以诊断恶性甲状腺结节(内部测试集为 0.898-0.937,外部测试集为 0.821-0.885)。在 SH 测试集中,CNNE2 的 AUC 明显高于放射科医生(0.932 比 0.840,P<0.001)。在外部测试集中,CNNE2 和放射科医生的 AUC 没有显著差异(P=0.113、0.126 和 0.690)。在内部和外部测试集中,CNN 在 US 上区分甲状腺结节的诊断性能与专家放射科医生相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc3/7498581/3bb4584e91ac/41598_2020_72270_Fig1_HTML.jpg

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验