Moreno-Martínez Álvaro, Izquierdo-Verdiguier Emma, Maneta Marco P, Camps-Valls Gustau, Robinson Nathaniel, Muñoz-Marí Jordi, Sedano Fernando, Clinton Nicholas, Running Steven W
Image Processing Laboratory (IPL), Universitat de València, València, Spain.
Numerical Terradynamic Simulation Group (NTSG), WA Franke College of Forestry and Conservation, University of Montana, Missoula, USA.
Remote Sens Environ. 2020 Sep 15;247:111901. doi: 10.1016/j.rse.2020.111901.
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales.
在轨运行卫星上的遥感光学传感器无法同时具备高光谱、高空间和高时间分辨率。此外,云层和气溶胶会对信号产生不利影响,从而污染陆地表面观测数据。我们提出了一种高度可扩展的时间自适应反射率融合模型(HISTARFM)算法,用于将不同传感器的多光谱图像进行融合,以减少噪声,并生成陆地每月无间隙的高分辨率(30米)观测数据。我们的方法使用了来自陆地卫星(空间分辨率为30米,重访周期为16天)以及来自Terra和Aqua平台的MODIS任务的图像(空间分辨率为500米,重访周期为每日)。我们在谷歌地球引擎(GEE)平台上实现了一种偏差感知卡尔曼滤波方法,以获得陆地卫星空间分辨率的融合图像。卡尔曼滤波器估计中增加的偏差校正考虑了模型误差和观测误差在时间上都是自相关的,并且可能具有非零均值这一事实。这种方法还能够可靠地估计与最终反射率估计相关的不确定性,从而允许在更高层次的遥感产品中进行误差传播分析。通过与其他先进方法进行比较,对生成的产品进行定量和定性评估,证实了该方法的有效性,并为在广泛的大陆尺度上以增强的时空分辨率进行业务应用打开了大门。