Suppr超能文献

一种使用非接触式床传感器检测睡眠呼吸暂停的新方法:对比研究。

A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study.

机构信息

AMI-Lab, Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada.

Research Centre on Aging, Sherbrooke, QC, Canada.

出版信息

J Med Internet Res. 2020 Sep 18;22(9):e18297. doi: 10.2196/18297.

Abstract

BACKGROUND

At present, there is an increased demand for accurate and personalized patient monitoring because of the various challenges facing health care systems. For instance, rising costs and lack of physicians are two serious problems affecting the patient's care. Nonintrusive monitoring of vital signs is a potential solution to close current gaps in patient monitoring. As an example, bed-embedded ballistocardiogram (BCG) sensors can help physicians identify cardiac arrhythmia and obstructive sleep apnea (OSA) nonintrusively without interfering with the patient's everyday activities. Detecting OSA using BCG sensors is gaining popularity among researchers because of its simple installation and accessibility, that is, their nonwearable nature. In the field of nonintrusive vital sign monitoring, a microbend fiber optic sensor (MFOS), among other sensors, has proven to be suitable. Nevertheless, few studies have examined apnea detection.

OBJECTIVE

This study aims to assess the capabilities of an MFOS for nonintrusive vital signs and sleep apnea detection during an in-lab sleep study. Data were collected from patients with sleep apnea in the sleep laboratory at Khoo Teck Puat Hospital.

METHODS

In total, 10 participants underwent full polysomnography (PSG), and the MFOS was placed under the patient's mattress for BCG data collection. The apneic event detection algorithm was evaluated against the manually scored events obtained from the PSG study on a minute-by-minute basis. Furthermore, normalized mean absolute error (NMAE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were employed to evaluate the sensor capabilities for vital sign detection, comprising heart rate (HR) and respiratory rate (RR). Vital signs were evaluated based on a 30-second time window, with an overlap of 15 seconds. In this study, electrocardiogram and thoracic effort signals were used as references to estimate the performance of the proposed vital sign detection algorithms.

RESULTS

For the 10 patients recruited for the study, the proposed system achieved reasonable results compared with PSG for sleep apnea detection, such as an accuracy of 49.96% (SD 6.39), a sensitivity of 57.07% (SD 12.63), and a specificity of 45.26% (SD 9.51). In addition, the system achieved close results for HR and RR estimation, such as an NMAE of 5.42% (SD 0.57), an NRMSE of 6.54% (SD 0.56), and an MAPE of 5.41% (SD 0.58) for HR, whereas an NMAE of 11.42% (SD 2.62), an NRMSE of 13.85% (SD 2.78), and an MAPE of 11.60% (SD 2.84) for RR.

CONCLUSIONS

Overall, the recommended system produced reasonably good results for apneic event detection, considering the fact that we are using a single-channel BCG sensor. Conversely, satisfactory results were obtained for vital sign detection when compared with the PSG outcomes. These results provide preliminary support for the potential use of the MFOS for sleep apnea detection.

摘要

背景

目前,由于医疗保健系统面临的各种挑战,人们对准确和个性化的患者监测的需求日益增加。例如,成本上升和医生短缺是影响患者护理的两个严重问题。非侵入性生命体征监测是解决当前患者监测差距的潜在解决方案。例如,嵌入式床球型心电图(BCG)传感器可以帮助医生非侵入性地识别心律失常和阻塞性睡眠呼吸暂停(OSA),而不会干扰患者的日常活动。由于其简单的安装和可及性(即非穿戴性质),使用 BCG 传感器检测 OSA 在研究人员中越来越受欢迎。在非侵入性生命体征监测领域,微弯光纤传感器(MFOS)等传感器已被证明是合适的。然而,很少有研究检查过呼吸暂停检测。

目的

本研究旨在评估 MFOS 在实验室睡眠研究中进行非侵入性生命体征和睡眠呼吸暂停检测的能力。数据来自 Khoo Teck Puat 医院睡眠实验室的睡眠呼吸暂停患者。

方法

共有 10 名参与者接受了全面的多导睡眠图(PSG)检查,MFOS 放置在患者床垫下以采集 BCG 数据。每分钟根据 PSG 研究手动评分的事件评估呼吸暂停事件检测算法。此外,使用归一化平均绝对误差(NMAE)、归一化均方根误差(NRMSE)和平均绝对百分比误差(MAPE)评估传感器对心率(HR)和呼吸率(RR)等生命体征检测的能力。生命体征基于 30 秒的时间窗口进行评估,重叠 15 秒。在这项研究中,心电图和胸壁用力信号被用作参考,以估计所提出的生命体征检测算法的性能。

结果

对于为这项研究招募的 10 名患者,与 PSG 相比,所提出的系统在睡眠呼吸暂停检测方面取得了合理的结果,例如,准确性为 49.96%(SD 6.39)、灵敏度为 57.07%(SD 12.63)和特异性为 45.26%(SD 9.51)。此外,该系统在 HR 和 RR 估计方面也取得了接近的结果,例如,HR 的 NMAE 为 5.42%(SD 0.57)、NRMSE 为 6.54%(SD 0.56)和 MAPE 为 5.41%(SD 0.58),而 RR 的 NMAE 为 11.42%(SD 2.62)、NRMSE 为 13.85%(SD 2.78)和 MAPE 为 11.60%(SD 2.84)。

结论

总的来说,考虑到我们使用的是单通道 BCG 传感器,推荐的系统在呼吸暂停事件检测方面取得了相当不错的结果。相反,与 PSG 结果相比,生命体征检测的结果令人满意。这些结果为 MFOS 用于睡眠呼吸暂停检测的潜在用途提供了初步支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2385/7532465/c72b55dfc41f/jmir_v22i9e18297_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验