Suppr超能文献

使用加速度计传感器专用固定器监测睡眠期间的心肺参数。

Monitoring of Cardiorespiratory Parameters during Sleep Using a Special Holder for the Accelerometer Sensor.

机构信息

Ubiquitous Computing Lab, Department of Computer Science, HTWG Konstanz-University of Applied Sciences, 78462 Konstanz, Germany.

Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy.

出版信息

Sensors (Basel). 2023 Jun 5;23(11):5351. doi: 10.3390/s23115351.

Abstract

Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject's sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system's performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.

摘要

睡眠对身心健康极为重要。尽管多导睡眠图是睡眠分析的一种既定方法,但它具有很强的侵入性和昂贵。因此,开发一种对患者影响最小的非侵入性和非侵入性家庭睡眠监测系统,能够可靠准确地测量心肺参数,具有重要意义。本研究的目的是验证一种基于加速度计传感器的非侵入性和非干扰性心肺参数监测系统。该系统包括一个特殊的支架,用于将系统安装在床垫下。附加的目的是确定最佳的相对系统位置(相对于主体),在该位置可以获得最准确和精确的测量参数值。从 23 名受试者(13 名男性和 10 名女性)中收集数据。使用六阶巴特沃斯带通滤波器和移动平均滤波器对获得的心动描记图信号进行顺序处理。结果,无论受试者的睡眠姿势如何,心率的平均误差(与参考值相比)为 2.24 次/分钟,呼吸率的平均误差为 1.52 次/分钟。对于男性和女性,心率的误差分别为 2.28 bpm 和 2.19 bpm,呼吸率的误差分别为 1.41 rpm 和 1.30 rpm。我们确定将传感器和系统放置在胸部水平是心肺测量的首选配置。尽管当前对健康受试者的测试结果很有希望,但需要对更大组受试者的系统性能进行进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验