Suppr超能文献

用具有不同计算权衡的神经动力学状态来编码时间。

Encoding time in neural dynamic regimes with distinct computational tradeoffs.

机构信息

Department of Neurobiology, University of California, Los Angeles, California, United States of America.

California Nanosystems Institute, University of California, Los Angeles, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Mar 3;18(3):e1009271. doi: 10.1371/journal.pcbi.1009271. eCollection 2022 Mar.

Abstract

Converging evidence suggests the brain encodes time in dynamic patterns of neural activity, including neural sequences, ramping activity, and complex dynamics. Most temporal tasks, however, require more than just encoding time, and can have distinct computational requirements including the need to exhibit temporal scaling, generalize to novel contexts, or robustness to noise. It is not known how neural circuits can encode time and satisfy distinct computational requirements, nor is it known whether similar patterns of neural activity at the population level can exhibit dramatically different computational or generalization properties. To begin to answer these questions, we trained RNNs on two timing tasks based on behavioral studies. The tasks had different input structures but required producing identically timed output patterns. Using a novel framework we quantified whether RNNs encoded two intervals using either of three different timing strategies: scaling, absolute, or stimulus-specific dynamics. We found that similar neural dynamic patterns at the level of single intervals, could exhibit fundamentally different properties, including, generalization, the connectivity structure of the trained networks, and the contribution of excitatory and inhibitory neurons. Critically, depending on the task structure RNNs were better suited for generalization or robustness to noise. Further analysis revealed different connection patterns underlying the different regimes. Our results predict that apparently similar neural dynamic patterns at the population level (e.g., neural sequences) can exhibit fundamentally different computational properties in regards to their ability to generalize to novel stimuli and their robustness to noise-and that these differences are associated with differences in network connectivity and distinct contributions of excitatory and inhibitory neurons. We also predict that the task structure used in different experimental studies accounts for some of the experimentally observed variability in how networks encode time.

摘要

越来越多的证据表明,大脑以动态的神经活动模式来编码时间,包括神经序列、斜率活动和复杂动力学。然而,大多数时间任务不仅需要编码时间,还需要具有独特的计算要求,包括表现出时间缩放、泛化到新的情境,或对噪声鲁棒性。目前还不知道神经回路如何既能编码时间,又能满足不同的计算要求,也不知道群体水平上类似的神经活动模式是否能表现出截然不同的计算或泛化特性。为了开始回答这些问题,我们根据行为研究,使用 RNN 对两个计时任务进行了训练。这些任务的输入结构不同,但需要产生相同时间的输出模式。我们使用一种新的框架来量化 RNN 是否使用三种不同的计时策略中的任一种来编码两个时间间隔:缩放、绝对或刺激特异性动力学。我们发现,单个间隔水平上相似的神经动态模式可能表现出截然不同的性质,包括泛化、训练网络的连接结构以及兴奋性和抑制性神经元的贡献。关键是,根据任务结构,RNN 更适合于泛化或对噪声的鲁棒性。进一步的分析揭示了不同的连接模式是不同规则的基础。我们的结果表明,群体水平上(例如神经序列)看似相似的神经动态模式在其泛化到新刺激的能力和对噪声的鲁棒性方面可能表现出根本不同的计算特性——这些差异与网络连接的差异以及兴奋性和抑制性神经元的不同贡献有关。我们还预测,不同实验研究中使用的任务结构解释了网络如何编码时间的实验观察到的一些可变性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3035/8893702/af16318c992a/pcbi.1009271.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验