Suppr超能文献

一种用于识别早期宫颈鳞状细胞癌患者淋巴结转移的术前放射组学模型。

A preoperative radiomics model for the identification of lymph node metastasis in patients with early-stage cervical squamous cell carcinoma.

作者信息

Yan Lifen, Yao Huasheng, Long Ruichun, Wu Lei, Xia Haotian, Li Jinglei, Liu Zaiyi, Liang Changhong

机构信息

The Second School of Clinical Medical, Southern Medical University, 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, Guangdong, China.

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou 510080, Guangdong, China.

出版信息

Br J Radiol. 2020 Dec 1;93(1116):20200358. doi: 10.1259/bjr.20200358. Epub 2020 Oct 6.

Abstract

OBJECTIVES

To develop and validate a radiomics model for preoperative identification of lymph node metastasis (LNM) in patients with early-stage cervical squamous cell carcinoma (CSCC).

METHODS

Total of 190 eligible patients were randomly divided into training ( = 100) and validation ( = 90) cohorts. Handcrafted features and deep-learning features were extracted from T2W fat suppression images. The minimum redundancy maximum relevance algorithm and LASSO regression with 10-fold cross-validation were used for key features selection. A radiomics model that incorporated the handcrafted-signature, deep-signature, and squamous cell carcinoma antigen (SCC-Ag) levels was developed by logistic regression. The model performance was assessed and validated with respect to its calibration, discrimination, and clinical usefulness.

RESULTS

Three handcrafted features and three deep-learning features were selected and used to build handcrafted- and deep-signature. The model, which incorporated the handcrafted-signature, deep-signature, and SCC-Ag, showed satisfactory calibration and discrimination in the training cohort (AUC: 0.852, 95% CI: 0.761-0.943) and the validation cohort (AUC: 0.815, 95% CI: 0.711-0.919). Decision curve analysis indicated the clinical usefulness of the radiomics model. The radiomics model yielded greater AUCs than either the radiomics signature (AUC = 0.806 and 0.779, respectively) or the SCC-Ag (AUC = 0.735 and 0.688, respectively) alone in both the training and validation cohorts.

CONCLUSION

The presented radiomics model can be used for preoperative identification of LNM in patients with early-stage CSCC. Its performance outperforms that of SCC-Ag level analysis alone.

ADVANCES IN KNOWLEDGE

A radiomics model incorporated radiomics signature and SCC-Ag levels demonstrated good performance in identifying LNM in patients with early-stage CSCC.

摘要

目的

开发并验证一种用于术前识别早期宫颈鳞状细胞癌(CSCC)患者淋巴结转移(LNM)的放射组学模型。

方法

将190例符合条件的患者随机分为训练组(n = 100)和验证组(n = 90)。从T2加权脂肪抑制图像中提取手工特征和深度学习特征。采用最小冗余最大相关算法和10折交叉验证的LASSO回归进行关键特征选择。通过逻辑回归建立了一个包含手工特征、深度学习特征和鳞状细胞癌抗原(SCC-Ag)水平的放射组学模型。对该模型的校准、鉴别能力和临床实用性进行了评估和验证。

结果

选择了三个手工特征和三个深度学习特征来构建手工特征和深度学习特征。该模型结合了手工特征、深度学习特征和SCC-Ag,在训练组(AUC:0.852,95%CI:0.761 - 0.943)和验证组(AUC:0.815,95%CI:0.711 - 0.919)中显示出令人满意的校准和鉴别能力。决策曲线分析表明了放射组学模型的临床实用性。在训练组和验证组中,放射组学模型的AUC均高于单独的放射组学特征(分别为AUC = 0.806和0.779)或SCC-Ag(分别为AUC = 0.735和0.688)。

结论

所提出的放射组学模型可用于术前识别早期CSCC患者的LNM。其性能优于单独的SCC-Ag水平分析。

知识进展

一个结合了放射组学特征和SCC-Ag水平的放射组学模型在识别早期CSCC患者的LNM方面表现良好。

相似文献

引用本文的文献

本文引用的文献

4
Tumor grading of soft tissue sarcomas using MRI-based radiomics.基于 MRI 的影像组学对软组织肉瘤进行肿瘤分级。
EBioMedicine. 2019 Oct;48:332-340. doi: 10.1016/j.ebiom.2019.08.059. Epub 2019 Sep 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验