Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Molecules. 2020 Sep 18;25(18):4270. doi: 10.3390/molecules25184270.
γ-Aminobutyric acid (GABA) participates in the regulation of adaptability to abiotic stress in plants. The objectives of this study were to investigate the effects of GABA priming on improving thermotolerance in creeping bentgrass () based on analyses of physiology and proteome using iTRAQ technology. GABA-treated plants maintained significantly higher endogenous GABA content, photochemical efficiency, performance index on absorption basis, membrane stability, and osmotic adjustment (OA) than untreated plants during a prolonged period of heat stress (18 days), which indicated beneficial effects of GABA on alleviating heat damage. Protein profiles showed that plants were able to regulate some common metabolic processes including porphyrin and chlorophyll metabolism, glutathione metabolism, pyruvate metabolism, carbon fixation, and amino acid metabolism for heat acclimation. It is noteworthy that the GABA application particularly regulated arachidonic acid metabolism and phenylpropanoid biosynthesis related to better thermotolerance. In response to heat stress, the GABA priming significantly increased the abundances of Cu/ZnSOD and APX4 that were consistent with superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. The GABA-upregulated proteins in relation to antioxidant defense (Cu/ZnSOD and APX4) for the reactive oxygen species scavenging, heat shock response (HSP90, HSP70, and HSP16.9) for preventing denatured proteins aggregation, stabilizing abnormal proteins, promoting protein maturation and assembly, sugars, and amino acids metabolism (PFK5, ATP-dependent 6-phosphofructokinase 5; FK2, fructokinase 2; BFRUCT, β-fructofuranosidase; RFS2, galactinol-sucrose galactosyltransferase 2; ASN2, asparagine synthetase 2) for OA and energy metabolism, and transcription factor (C2H2 ZNF, C2H2 zinc-finger protein) for the activation of stress-defensive genes could play vital roles in establishing thermotolerance. Current findings provide an illuminating insight into the new function of GABA on enhancing adaptability to heat stress in plants.
γ-氨基丁酸(GABA)参与植物对非生物胁迫适应性的调节。本研究的目的是通过 iTRAQ 技术的生理学和蛋白质组学分析,研究 GABA 引发对提高匍匐翦股颖耐热性的影响。与未处理的植物相比,在长时间的热胁迫(18 天)下,GABA 处理的植物保持了显著更高的内源性 GABA 含量、光化学效率、基于吸收的性能指数、膜稳定性和渗透调节(OA),这表明 GABA 对缓解热损伤有有益的影响。蛋白质谱显示,植物能够调节一些常见的代谢过程,包括卟啉和叶绿素代谢、谷胱甘肽代谢、丙酮酸代谢、碳固定和氨基酸代谢,以适应热胁迫。值得注意的是,GABA 的应用特别调节了与更好的耐热性相关的花生四烯酸代谢和苯丙烷生物合成。在应对热胁迫时,GABA 引发显著增加了 Cu/ZnSOD 和 APX4 的丰度,这与超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性一致。GABA 上调与抗氧化防御(Cu/ZnSOD 和 APX4)相关的蛋白质,用于清除活性氧,热休克反应(HSP90、HSP70 和 HSP16.9)用于防止变性蛋白聚集,稳定异常蛋白,促进蛋白成熟和组装,糖和氨基酸代谢(PFK5、ATP 依赖性 6-磷酸果糖激酶 5;FK2、果糖激酶 2;BFRUCT、β-呋喃果糖苷酶;RFS2、半乳糖醇-蔗糖半乳糖基转移酶 2;ASN2、天冬酰胺合成酶 2)用于 OA 和能量代谢,以及转录因子(C2H2 ZNF、C2H2 锌指蛋白)用于激活应激防御基因,在建立耐热性方面可能发挥重要作用。目前的研究结果为 GABA 增强植物对热应激适应性的新功能提供了新的认识。