Bernetti Mattia, Bertazzo Martina, Masetti Matteo
Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, I-34136 Trieste, Italy.
Computational Sciences, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy.
Pharmaceuticals (Basel). 2020 Sep 18;13(9):253. doi: 10.3390/ph13090253.
The big data concept is currently revolutionizing several fields of science including drug discovery and development. While opening up new perspectives for better drug design and related strategies, big data analysis strongly challenges our current ability to manage and exploit an extraordinarily large and possibly diverse amount of information. The recent renewal of machine learning (ML)-based algorithms is key in providing the proper framework for addressing this issue. In this respect, the impact on the exploitation of molecular dynamics (MD) simulations, which have recently reached mainstream status in computational drug discovery, can be remarkable. Here, we review the recent progress in the use of ML methods coupled to biomolecular simulations with potentially relevant implications for drug design. Specifically, we show how different ML-based strategies can be applied to the outcome of MD simulations for gaining knowledge and enhancing sampling. Finally, we discuss how intrinsic limitations of MD in accurately modeling biomolecular systems can be alleviated by including information coming from experimental data.
大数据概念目前正在彻底改变包括药物发现与开发在内的多个科学领域。在为更好的药物设计及相关策略开辟新前景的同时,大数据分析也对我们当前管理和利用极其大量且可能多样的信息的能力构成了巨大挑战。基于机器学习(ML)的算法的近期更新是为解决这一问题提供适当框架的关键。在这方面,其对分子动力学(MD)模拟利用的影响可能非常显著,MD模拟最近在计算药物发现中已达到主流地位。在此,我们回顾了将ML方法与生物分子模拟相结合在药物设计方面可能具有潜在相关意义的近期进展。具体而言,我们展示了如何将不同的基于ML的策略应用于MD模拟的结果,以获取知识并增强采样。最后,我们讨论了如何通过纳入来自实验数据的信息来缓解MD在精确建模生物分子系统方面的固有局限性。