Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA.
J Chem Phys. 2020 Sep 21;153(11):115101. doi: 10.1063/5.0020458.
Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle. As a cysteine protease, PLpro is rich in cysteines and histidines, and their protonation/deprotonation modulates catalysis and conformational plasticity. Here, we report the pK calculations and assessment of the proton-coupled conformational dynamics of SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV PLpros using the recently developed graphical processing unit (GPU)-accelerated implicit-solvent continuous constant pH molecular dynamics method with a new asynchronous replica-exchange scheme, which allows computation on a single GPU card. The calculated pK's support the catalytic roles of the Cys-His-Asp triad. We also found that several residues can switch protonation states at physiological pH among which is C270/271 located on the flexible blocking loop 2 (BL2) of SARS-CoV-2/CoV PLpro. Simulations revealed that the BL2 can open and close depending on the protonation state of C271/270, consistent with the most recent crystal structure evidence. Interestingly, despite the lack of an analogous cysteine, BL2 in MERS-CoV PLpro is also very flexible, challenging a current hypothesis. These findings are supported by the all-atom fixed-charge simulations and provide a starting point for more detailed studies to assist the structure-based design of broad-spectrum inhibitors against CoV PLpros.
广谱抗病毒药物是阻止 2019 年冠状病毒病(COVID-19)大流行和预防未来大流行的迫切需要。新型严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)与严重急性呼吸系统综合征冠状病毒(SARS-CoV)和中东呼吸系统综合征冠状病毒(MERS-CoV)有关,这两种病毒曾引发过先前的疫情。木瓜样蛋白酶(PLpro)是一种有吸引力的药物靶标,因为它在病毒生命周期中起着至关重要的作用。作为一种半胱氨酸蛋白酶,PLpro富含半胱氨酸和组氨酸,其质子化/去质子化调节催化和构象可塑性。在这里,我们报告了使用最近开发的图形处理单元(GPU)加速隐式溶剂连续恒 pH 分子动力学方法和新的异步 replica-exchange 方案对 SARS-CoV-2 与 SARS-CoV 和 MERS-CoV PLpros 的 pK 计算和质子偶联构象动力学的评估,该方案允许在单个 GPU 卡上进行计算。计算出的 pK 支持 Cys-His-Asp 三联体的催化作用。我们还发现,在生理 pH 下,有几个残基可以切换质子化状态,其中包括位于 SARS-CoV-2/CoV PLpro 柔性阻断环 2(BL2)上的 C270/271。模拟结果表明,BL2 可以根据 C271/270 的质子化状态打开和关闭,这与最近的晶体结构证据一致。有趣的是,尽管缺乏类似的半胱氨酸,MERS-CoV PLpro 的 BL2 也非常灵活,这对当前的假说提出了挑战。这些发现得到了全原子固定电荷模拟的支持,并为更详细的研究提供了起点,以协助基于结构的广谱 CoV PLpro 抑制剂的设计。