Suppr超能文献

天然抗氧化剂和药物的自由基清除活性:联合机器学习和量子化学方法的开发。

Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol.

机构信息

Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.

Dipartimento di Matematica "Tullio Levi-Civita," Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy.

出版信息

J Chem Phys. 2020 Sep 21;153(11):114117. doi: 10.1063/5.0013278.

Abstract

Many natural substances and drugs are radical scavengers that prevent the oxidative damage to fundamental cell components. This process may occur via different mechanisms, among which, one of the most important, is hydrogen atom transfer. The feasibility of this process can be assessed in silico using quantum mechanics to compute ΔG . This approach is accurate, but time consuming. The use of machine learning (ML) allows us to reduce tremendously the computational cost of the assessment of the scavenging properties of a potential antioxidant, almost without affecting the quality of the results. However, in many ML implementations, the description of the relevant features of a molecule in a machine-friendly language is still the most challenging aspect. In this work, we present a newly developed machine-readable molecular representation aimed at the application of automatized ML algorithms. In particular, we show an application on the calculation of ΔG .

摘要

许多天然物质和药物是自由基清除剂,可以防止基本细胞成分的氧化损伤。这个过程可能通过不同的机制发生,其中最重要的机制之一是氢原子转移。可以使用量子力学在计算机上评估此过程的可行性,以计算 ΔG。这种方法是准确的,但计算成本高。使用机器学习 (ML) 可以大大降低评估潜在抗氧化剂的清除特性的计算成本,而几乎不会影响结果的质量。然而,在许多 ML 实现中,以机器友好的语言描述分子的相关特征仍然是最具挑战性的方面。在这项工作中,我们提出了一种新开发的可机器读取的分子表示,旨在应用自动化 ML 算法。特别是,我们展示了在计算 ΔG 方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验