Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Leuven, Belgium.
BMC Bioinformatics. 2020 Sep 22;21(1):415. doi: 10.1186/s12859-020-03730-z.
In silico promoter prediction represents an important challenge in bioinformatics as it provides a first-line approach to identifying regulatory elements to support wet-lab experiments. Historically, available promoter prediction software have focused on sigma factor-associated promoters in the model organism E. coli. As a consequence, traditional promoter predictors yield suboptimal predictions when applied to other prokaryotic genera, such as Pseudomonas, a Gram-negative bacterium of crucial medical and biotechnological importance.
We developed SAPPHIRE, a promoter predictor for σ70 promoters in Pseudomonas. This promoter prediction relies on an artificial neural network that evaluates sequences on their similarity to the - 35 and - 10 boxes of σ70 promoters found experimentally in P. aeruginosa and P. putida. SAPPHIRE currently outperforms established predictive software when classifying Pseudomonas σ70 promoters and was built to allow further expansion in the future.
SAPPHIRE is the first predictive tool for bacterial σ70 promoters in Pseudomonas. SAPPHIRE is free, publicly available and can be accessed online at www.biosapphire.com . Alternatively, users can download the tool as a Python 3 script for local application from this site.
在生物信息学中,计算机预测启动子是一项重要的挑战,因为它提供了一种识别调控元件的一线方法,以支持湿实验。历史上,可用的启动子预测软件主要集中在模式生物大肠杆菌中与σ因子相关的启动子上。因此,传统的启动子预测器在应用于其他原核生物属(如假单胞菌)时,预测效果并不理想,假单胞菌是一种革兰氏阴性菌,在医学和生物技术方面具有至关重要的作用。
我们开发了 SAPPHIRE,这是一种用于预测假单胞菌σ70 启动子的预测器。这种启动子预测依赖于人工神经网络,该网络根据其与在铜绿假单胞菌和恶臭假单胞菌中实验发现的σ70 启动子的-35 和-10 框的相似性来评估序列。SAPPHIRE 在对假单胞菌σ70 启动子进行分类时,目前优于已建立的预测软件,并为未来的进一步扩展而构建。
SAPPHIRE 是第一个用于预测假单胞菌细菌σ70 启动子的预测工具。SAPPHIRE 是免费的,可公开获得,并可在网上访问www.biosapphire.com。或者,用户可以从该网站下载该工具作为用于本地应用的 Python 3 脚本。