Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China.
Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China.
Oxid Med Cell Longev. 2020 Sep 4;2020:7834252. doi: 10.1155/2020/7834252. eCollection 2020.
Red blood cells (RBCs) are susceptible to sustained free radical damage during circulation, while the changes of antioxidant capacity and regulatory mechanism of RBCs under different oxygen gradients remain unclear. Here, we investigated the changes of oxidative damage and antioxidant capacity of RBCs in different oxygen gradients and identified the underlying mechanisms using an in vitro model of the hypoxanthine/xanthine oxidase (HX/XO) system. In the present study, we reported that the hypoxic RBCs showed much higher oxidative stress injury and lower antioxidant capacity compared with normoxic RBCs. In addition, we found that the disturbance of the recycling process, but not de novo synthesis of glutathione (GSH), accounted for the significantly decreased antioxidant capacity of hypoxic RBCs compared to normoxic RBCs. We further elucidated the underlying molecular mechanism by which oxidative phosphorylation of Band 3 blocked the hexose monophosphate pathway (HMP) and decreased NADPH production aggravating the dysfunction of GSH synthesis in hypoxic RBCs under oxidative conditions.
红细胞(RBCs)在循环过程中容易受到持续的自由基损伤,而在不同氧梯度下 RBCs 的抗氧化能力和调节机制的变化尚不清楚。在这里,我们使用黄嘌呤/黄嘌呤氧化酶(HX/XO)系统的体外模型,研究了不同氧梯度下 RBCs 的氧化损伤和抗氧化能力的变化,并确定了其潜在机制。在本研究中,我们报道了与常氧 RBCs 相比,低氧 RBCs 表现出更高的氧化应激损伤和更低的抗氧化能力。此外,我们发现与常氧 RBCs 相比,低氧 RBCs 中谷胱甘肽(GSH)的再循环过程受到干扰,而不是从头合成 GSH,这导致其抗氧化能力显著降低。我们进一步阐明了分子机制,即 Band 3 的氧化磷酸化阻断了己糖单磷酸途径(HMP),减少 NADPH 的产生,从而加重了低氧 RBCs 在氧化条件下 GSH 合成功能障碍。