Gigliotti James, Li Xin, Sundaram Suresh, Deniz Dogukan, Prudkovskiy Vladimir, Turmaud Jean-Philippe, Hu Yiran, Hu Yue, Fossard Frédéric, Mérot Jean-Sébastien, Loiseau Annick, Patriarche Gilles, Yoon Bokwon, Landman Uzi, Ougazzaden Abdallah, Berger Claire, de Heer Walt A
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Nano. 2020 Oct 27;14(10):12962-12971. doi: 10.1021/acsnano.0c04164. Epub 2020 Oct 1.
The realization of high-performance nanoelectronics requires control of materials at the nanoscale. Methods to produce high quality epitaxial graphene (EG) nanostructures on silicon carbide are known. The next step is to grow van der Waals semiconductors on top of EG nanostructures. Hexagonal boron nitride (h-BN) is a wide bandgap semiconductor with a honeycomb lattice structure that matches that of graphene, making it ideally suited for graphene-based nanoelectronics. Here, we describe the preparation and characterization of multilayer h-BN grown epitaxially on EG using a migration-enhanced metalorganic vapor phase epitaxy process. As a result of the lateral epitaxial deposition (LED) mechanism, the grown h-BN/EG heterostructures have highly ordered epitaxial interfaces, as desired in order to preserve the transport properties of pristine graphene. Atomic scale structural and energetic details of the observed row-by-row growth mechanism of the two-dimensional (2D) epitaxial h-BN film are analyzed through first-principles simulations, demonstrating one-dimensional nucleation-free-energy-barrierless growth. This industrially relevant LED process can be applied to a wide variety of van der Waals materials.
高性能纳米电子学的实现需要在纳米尺度上对材料进行控制。在碳化硅上制备高质量外延石墨烯(EG)纳米结构的方法是已知的。下一步是在EG纳米结构上生长范德华半导体。六方氮化硼(h-BN)是一种宽带隙半导体,具有与石墨烯相匹配的蜂窝晶格结构,使其非常适合用于基于石墨烯的纳米电子学。在这里,我们描述了使用迁移增强金属有机气相外延工艺在EG上外延生长的多层h-BN的制备和表征。由于横向外延沉积(LED)机制,生长的h-BN/EG异质结构具有高度有序的外延界面,这是保持原始石墨烯传输特性所期望的。通过第一性原理模拟分析了二维(2D)外延h-BN薄膜观察到的逐行生长机制的原子尺度结构和能量细节,证明了一维无成核自由能势垒生长。这种与工业相关的LED工艺可以应用于多种范德华材料。