Suppr超能文献

通过学习界面水分子结构的时空特征预测疏水性:将分子动力学模拟与卷积神经网络相结合。

Predicting Hydrophobicity by Learning Spatiotemporal Features of Interfacial Water Structure: Combining Molecular Dynamics Simulations with Convolutional Neural Networks.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States.

出版信息

J Phys Chem B. 2020 Oct 15;124(41):9103-9114. doi: 10.1021/acs.jpcb.0c05977. Epub 2020 Oct 2.

Abstract

The hydrophobicity of functionalized interfaces can be quantified by the structure and dynamics of water molecules using molecular dynamics (MD) simulations, but existing methods to quantify interfacial hydrophobicity are computationally expensive. In this work, we develop a new machine learning approach that leverages convolutional neural networks (CNNs) to predict the hydration free energy (HFE) as a measure of interfacial hydrophobicity based on water positions sampled from MD simulations. We construct a set of idealized self-assembled monolayers (SAMs) with varying surface polarities and calculate their HFEs using indirect umbrella sampling calculations (INDUS). Using the INDUS-calculated HFEs as labels and physically informed representations of interfacial water density from MD simulations as input, we train and evaluate a series of neural networks to predict SAM HFEs. By systematically varying model hyperparameters, we demonstrate that a 3D CNN trained to analyze both spatial and temporal correlations between interfacial water molecule positions leads to HFE predictions that require an order of magnitude less MD simulation time than INDUS. We showcase the power of this model to explore a large design space by predicting HFEs for a set of 71 chemically heterogeneous SAMs with varying patterns and mole fractions.

摘要

功能化界面的疏水性可以通过使用分子动力学 (MD) 模拟来定量研究水分子的结构和动力学,但现有的定量界面疏水性的方法计算成本很高。在这项工作中,我们开发了一种新的机器学习方法,该方法利用卷积神经网络 (CNN) 基于从 MD 模拟中采样的水分子位置来预测水合自由能 (HFE) 作为界面疏水性的度量。我们构建了一组具有不同表面极性的理想化自组装单分子层 (SAM),并使用间接伞状采样计算 (INDUS) 计算它们的 HFE。使用 INDUS 计算的 HFE 作为标签,以及从 MD 模拟中获得的界面水密度的物理信息表示作为输入,我们训练和评估了一系列神经网络来预测 SAM HFE。通过系统地改变模型超参数,我们证明了经过训练可分析界面水分子位置之间的空间和时间相关性的 3D CNN 可用于预测 HFE,所需的 MD 模拟时间比 INDUS 少一个数量级。我们展示了该模型的强大功能,通过预测一组具有不同图案和摩尔分数的 71 种化学异构 SAM 的 HFE 来探索一个大的设计空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验