Dallin Bradley C, Kelkar Atharva S, Van Lehn Reid C
Department of Chemical and Biological Engineering, University of Wisconsin - Madison 1415 Engineering Drive Madison WI 53706 USA
Chem Sci. 2023 Jan 3;14(5):1308-1319. doi: 10.1039/d2sc02856e. eCollection 2023 Feb 1.
The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that drive numerous biological and industrial processes. Chemically heterogeneous interfaces are abundant in these contexts; examples include the surfaces of proteins, functionalized nanomaterials, and polymeric materials. While the hydrophobicity of nonpolar solutes can be predicted and related to the structure of interfacial water molecules, predicting the hydrophobicity of chemically heterogeneous interfaces remains a challenge because of the complex, non-additive contributions to hydrophobicity that depend on the chemical identity and nanoscale spatial arrangements of polar and nonpolar groups. In this work, we utilize atomistic molecular dynamics simulations in conjunction with enhanced sampling and data-centric analysis techniques to quantitatively relate changes in interfacial water structure to the hydration free energy (a thermodynamically well-defined descriptor of hydrophobicity) of chemically heterogeneous interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs) composed of ligands with nonpolar and polar end groups of different chemical identity (amine, amide, and hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that only five features of interfacial water structure are required to accurately predict hydration free energies. Examination of these features reveals mechanistic insights into the interfacial hydrogen bonding behaviors that distinguish different surface compositions and patterns. This analysis also identifies the probability of highly coordinated water structures as a unique signature of hydrophobicity. These insights provide a physical basis to understand the hydrophobicity of chemically heterogeneous interfaces and connect hydrophobicity to experimentally accessible perturbations of interfacial water structure.
界面的疏水性决定了驱动众多生物和工业过程的疏水相互作用的强度。在这些情况下,化学性质不均一的界面很常见;例如蛋白质表面、功能化纳米材料表面和聚合物材料表面。虽然非极性溶质的疏水性可以预测并与界面水分子的结构相关,但预测化学性质不均一的界面的疏水性仍然是一个挑战,因为对疏水性的复杂、非加和性贡献取决于极性和非极性基团的化学性质和纳米级空间排列。在这项工作中,我们利用原子分子动力学模拟,结合增强采样和以数据为中心的分析技术,将界面水结构的变化与化学性质不均一的界面的水合自由能(一种热力学定义明确的疏水性描述符)定量关联起来。我们分析了一个由58个自组装单分子层(SAMs)组成的大数据集,这些单分子层由具有不同化学性质(胺基、酰胺基和羟基)的非极性和极性端基的配体组成,具有五种摩尔分数、两种空间模式,并带有缩放的部分电荷。我们发现,只需界面水结构的五个特征就能准确预测水合自由能。对这些特征的研究揭示了区分不同表面组成和模式的界面氢键行为的机理见解。该分析还将高度配位水结构的概率确定为疏水性的独特特征。这些见解为理解化学性质不均一的界面的疏水性提供了物理基础,并将疏水性与界面水结构的实验可及扰动联系起来。