Suppr超能文献

利用深度学习的混合 PET/MR 和 PET/CT 成像的下一代研究应用。

Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning.

机构信息

Department of Radiology, Stanford University, Stanford, CA, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2700-2707. doi: 10.1007/s00259-019-04374-9. Epub 2019 Jun 29.

Abstract

INTRODUCTION

Recently there have been significant advances in the field of machine learning and artificial intelligence (AI) centered around imaging-based applications such as computer vision. In particular, the tremendous power of deep learning algorithms, primarily based on convolutional neural network strategies, is becoming increasingly apparent and has already had direct impact on the fields of radiology and nuclear medicine. While most early applications of computer vision to radiological imaging have focused on classification of images into disease categories, it is also possible to use these methods to improve image quality. Hybrid imaging approaches, such as PET/MRI and PET/CT, are ideal for applying these methods.

METHODS

This review will give an overview of the application of AI to improve image quality for PET imaging directly and how the additional use of anatomic information from CT and MRI can lead to further benefits. For PET, these performance gains can be used to shorten imaging scan times, with improvement in patient comfort and motion artifacts, or to push towards lower radiotracer doses. It also opens the possibilities for dual tracer studies, more frequent follow-up examinations, and new imaging indications. How to assess quality and the potential effects of bias in training and testing sets will be discussed.

CONCLUSION

Harnessing the power of these new technologies to extract maximal information from hybrid PET imaging will open up new vistas for both research and clinical applications with associated benefits in patient care.

摘要

简介

最近,机器学习和人工智能(AI)领域取得了重大进展,其核心是基于成像的应用,如计算机视觉。特别是,深度学习算法的巨大威力,主要基于卷积神经网络策略,正变得越来越明显,并已直接影响到放射学和核医学领域。虽然计算机视觉在放射影像学中的早期应用大多集中在将图像分类为疾病类别上,但也可以使用这些方法来提高图像质量。PET/MRI 和 PET/CT 等混合成像方法非常适合应用这些方法。

方法

本综述将概述人工智能在直接提高 PET 成像质量方面的应用,以及如何进一步利用来自 CT 和 MRI 的解剖信息来带来额外的好处。对于 PET,这些性能提升可用于缩短成像扫描时间,提高患者舒适度和运动伪影,或推动更低的放射性示踪剂剂量。它还为双示踪剂研究、更频繁的随访检查和新的成像适应症开辟了可能性。如何评估质量以及在训练和测试集中存在偏差的潜在影响将进行讨论。

结论

利用这些新技术的力量从混合 PET 成像中提取最大信息,将为研究和临床应用开辟新的前景,并为患者护理带来相关益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c5d/6881542/85d270ffc37a/nihms-1533141-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验