Suppr超能文献

放射科医生使用和不使用深度学习系统对 chest X-ray 进行计算机辅助诊断 COVID-19 的外部验证研究。

Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system.

机构信息

Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.

Department of Radiology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan.

出版信息

Sci Rep. 2023 Oct 16;13(1):17533. doi: 10.1038/s41598-023-44818-9.

Abstract

To evaluate the diagnostic performance of our deep learning (DL) model of COVID-19 and investigate whether the diagnostic performance of radiologists was improved by referring to our model. Our datasets contained chest X-rays (CXRs) for the following three categories: normal (NORMAL), non-COVID-19 pneumonia (PNEUMONIA), and COVID-19 pneumonia (COVID). We used two public datasets and private dataset collected from eight hospitals for the development and external validation of our DL model (26,393 CXRs). Eight radiologists performed two reading sessions: one session was performed with reference to CXRs only, and the other was performed with reference to both CXRs and the results of the DL model. The evaluation metrics for the reading session were accuracy, sensitivity, specificity, and area under the curve (AUC). The accuracy of our DL model was 0.733, and that of the eight radiologists without DL was 0.696 ± 0.031. There was a significant difference in AUC between the radiologists with and without DL for COVID versus NORMAL or PNEUMONIA (p = 0.0038). Our DL model alone showed better diagnostic performance than that of most radiologists. In addition, our model significantly improved the diagnostic performance of radiologists for COVID versus NORMAL or PNEUMONIA.

摘要

为了评估我们的 COVID-19 深度学习(DL)模型的诊断性能,并研究放射科医生是否通过参考我们的模型来提高诊断性能。我们的数据集包含以下三个类别的胸部 X 光片(CXR):正常(NORMAL)、非 COVID-19 肺炎(PNEUMONIA)和 COVID-19 肺炎(COVID)。我们使用了两个公共数据集和来自八家医院的私人数据集来开发和验证我们的 DL 模型(26393 张 CXR)。八名放射科医生进行了两次阅读会议:一次是仅参考 CXR 进行的,另一次是同时参考 CXR 和 DL 模型的结果进行的。阅读会议的评估指标为准确性、敏感度、特异性和曲线下面积(AUC)。我们的 DL 模型的准确率为 0.733,而八名没有 DL 的放射科医生的准确率为 0.696±0.031。对于 COVID 与 NORMAL 或 PNEUMONIA,有和没有 DL 的放射科医生之间的 AUC 存在显著差异(p=0.0038)。我们的 DL 模型单独显示出比大多数放射科医生更好的诊断性能。此外,我们的模型显著提高了放射科医生对 COVID 与 NORMAL 或 PNEUMONIA 的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4a9/10579343/eca2f3673090/41598_2023_44818_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验