Suppr超能文献

基于胸部X光片将新型冠状病毒肺炎与其他类型病毒性肺炎进行鉴别及严重程度评分:深度学习与多位阅片者评估的比较

Differentiation of COVID-19 from other types of viral pneumonia and severity scoring on baseline chest radiographs: Comparison of deep learning with multi-reader evaluation.

作者信息

Enshaei Nastaran, Mohammadi Arash, Naderkhani Farnoosh, Daneman Nick, Abu Mughli Rawan, Anconina Reut, Berger Ferco H, Kozak Robert Andrew, Mubareka Samira, Villanueva Campos Ana Maria, Narang Keshav, Vivekanandan Thayalasuthan, Chan Adrienne Kit, Lam Philip, Andany Nisha, Oikonomou Anastasia

机构信息

Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada.

Department of Medicine, Division of Infectious Diseases, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.

出版信息

PLoS One. 2025 Jul 29;20(7):e0328061. doi: 10.1371/journal.pone.0328061. eCollection 2025.

Abstract

Chest X-ray (CXR) imaging plays a pivotal role in the diagnosis and prognosis of viral pneumonia. However, distinguishing COVID-19 CXRs from other viral infections remains challenging due to highly similar radiographic features. Most existing deep learning (DL) models focus on differentiating COVID-19 from community-acquired pneumonia (CAP) rather than other viral pneumonias and often overlook baseline CXRs, missing the critical window for early detection and intervention. Moreover, manual severity scoring of COVID-19 CXRs by radiologists is subjective and time-intensive, highlighting the need for automated systems. This study introduces a DL system for distinguishing COVID-19 from other viral pneumonias on baseline CXRs acquired within three days of PCR testing, and for automated severity scoring of COVID-19 CXRs. The system was developed using a dataset of 2,547 patients (808 COVID-19, 936 non-COVID viral pneumonia, and 803 normal cases) and validated externally on several publicly accessible datasets. Compared to four experienced radiologists, the model achieved higher diagnostic accuracy (76.4% vs. 71.8%) and enhanced COVID-19 identification (F1-score: 74.1% vs. 61.3%), with an AUC of 93% for distinguishing between viral pneumonia and normal cases, and 89.8% for differentiating COVID-19 from other viral pneumonias. The severity-scoring module exhibited a high Pearson correlation of 93% and a low mean absolute error (MAE) of 2.35 compared to the radiologists' consensus. External validation on independent public datasets confirmed the model's generalizability. Subgroup analyses stratified by patient age, sex, and severity levels further demonstrated consistent performance, supporting the system's robustness across diverse clinical populations. These findings suggest that the proposed DL system could assist radiologists in the early diagnosis and severity assessment of COVID-19 from baseline CXRs, particularly in resource-limited settings.

摘要

胸部X光(CXR)成像在病毒性肺炎的诊断和预后中起着关键作用。然而,由于影像学特征高度相似,将新冠肺炎的胸部X光与其他病毒感染区分开来仍然具有挑战性。大多数现有的深度学习(DL)模型专注于区分新冠肺炎与社区获得性肺炎(CAP),而不是其他病毒性肺炎,并且常常忽略基线胸部X光,错过早期检测和干预的关键窗口。此外,放射科医生对新冠肺炎胸部X光进行手动严重程度评分具有主观性且耗时,这凸显了对自动化系统的需求。本研究引入了一种DL系统,用于在PCR检测三天内获取的基线胸部X光上区分新冠肺炎与其他病毒性肺炎,并对新冠肺炎胸部X光进行自动化严重程度评分。该系统使用了一个包含2547名患者的数据集(808例新冠肺炎、936例非新冠肺炎病毒性肺炎和803例正常病例)开发,并在几个可公开获取的数据集上进行了外部验证。与四位经验丰富的放射科医生相比,该模型实现了更高的诊断准确性(76.4%对71.8%)和增强的新冠肺炎识别能力(F1分数:74.1%对61.3%),区分病毒性肺炎和正常病例的AUC为93%,区分新冠肺炎与其他病毒性肺炎的AUC为89.8%。与放射科医生的共识相比,严重程度评分模块显示出93%的高皮尔逊相关性和2.35的低平均绝对误差(MAE)。在独立公共数据集上的外部验证证实了该模型的通用性。按患者年龄、性别和严重程度分层的亚组分析进一步证明了一致的性能,支持该系统在不同临床人群中的稳健性。这些发现表明,所提出的DL系统可以帮助放射科医生从基线胸部X光对新冠肺炎进行早期诊断和严重程度评估,特别是在资源有限的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a81a/12306774/6f68b8df57fb/pone.0328061.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验