Maguolo Gianluca, Nanni Loris
University of Padova, Department of Information Engineering, Via Gradenigo 6, 35131, Padova, Italy.
Inf Fusion. 2021 Dec;76:1-7. doi: 10.1016/j.inffus.2021.04.008. Epub 2021 Apr 30.
In this paper, we compare and evaluate different testing protocols used for automatic COVID-19 diagnosis from X-Ray images in the recent literature. We show that similar results can be obtained using X-Ray images that do not contain most of the lungs. We are able to remove the lungs from the images by turning to black the center of the X-Ray scan and training our classifiers only on the outer part of the images. Hence, we deduce that several testing protocols for the recognition are not fair and that the neural networks are learning patterns in the dataset that are not correlated to the presence of COVID-19. Finally, we show that creating a fair testing protocol is a challenging task, and we provide a method to measure how fair a specific testing protocol is. In the future research we suggest to check the fairness of a testing protocol using our tools and we encourage researchers to look for better techniques than the ones that we propose.
在本文中,我们比较并评估了近期文献中用于从X射线图像自动诊断新冠肺炎的不同测试协议。我们表明,使用不包含大部分肺部的X射线图像也能获得相似的结果。我们能够通过将X射线扫描中心设为黑色并仅在图像的外部部分训练我们的分类器来从图像中去除肺部。因此,我们推断几种用于识别的测试协议是不公平的,并且神经网络正在学习数据集中与新冠肺炎的存在无关的模式。最后,我们表明创建一个公平的测试协议是一项具有挑战性的任务,并且我们提供了一种方法来衡量特定测试协议的公平程度。在未来的研究中,我们建议使用我们的工具检查测试协议的公平性,并且我们鼓励研究人员寻找比我们提出的技术更好的技术。