Suppr超能文献

基于深度学习的计算机辅助检测系统在疑似 COVID-19 患者胸部 X 线片中的应用。

Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19.

机构信息

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Korean J Radiol. 2020 Oct;21(10):1150-1160. doi: 10.3348/kjr.2020.0536. Epub 2020 Jul 17.

Abstract

OBJECTIVE

To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance.

MATERIALS AND METHODS

In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated.

RESULTS

Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; < 0.001).

CONCLUSION

Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.

摘要

目的

描述一种基于深度学习的计算机辅助检测 (CAD) 系统在解释疑似冠状病毒病 (COVID-19) 患者的胸部 X 射线 (CXR) 中的应用经验,并研究 CAD 辅助下 CXR 解释的诊断性能。

材料和方法

本单中心回顾性研究调查了疑似或确诊 COVID-19 患者的初始 CXR。为了在日常实践中解释 CXR,我们实施了一种商业化的基于深度学习的 CAD 系统,该系统可以识别 CXR 上的各种异常。根据两个不同的参考标准评估了有 CAD 辅助的放射科医生的诊断性能:1) COVID-19 的实时逆转录聚合酶链反应 (rRT-PCR) 结果,2) 胸部 CT 上提示肺炎的肺部异常。还评估了 CXR 和 rRT-PCR 结果的放射学报告周转时间 (TAT)。

结果

在 332 名具有 rRT-PCR 结果的患者中(男:女,173:159;平均年龄 57 岁),16 名患者(4.8%)被诊断为 COVID-19。使用 CXR,有 CAD 辅助的放射科医生识别出 rRT-PCR 阳性 COVID-19 患者的敏感性和特异性分别为 68.8%和 66.7%。在 119 名具有胸部 CT 的患者中(男:女,75:44;平均年龄 69 岁),有 CAD 辅助的放射科医生报告 CXR 上的肺炎的敏感性为 81.5%,特异性为 72.3%。CXR 报告的 TAT 明显短于 rRT-PCR 结果(中位数分别为 51 分钟和 507 分钟;<0.001)。

结论

有 CAD 辅助的放射科医生可以识别 rRT-PCR 阳性 COVID-19 患者或 CXR 上的肺炎患者,其性能具有可接受的准确性。在疑似 COVID-19 的患者中,CXR 的 TAT 比 rRT-PCR 快得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e1/7458860/64e76ff3911b/kjr-21-1150-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验